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Summary

This thesis documents a range of research carried out on the topic of glottal source and

voice quality analysis. Initially, a review is given of the physiological and acoustic cor-

relates of different vocal settings. This is followed by a discussion of the importance of

glottal source and voice quality variation in spoken communication, and the impact of

modelling these aspects on speech technology. Despite the potential benefit of acoustic

characterisation of the glottal source for speech technology, existing algorithms often suffer

from a lack of robustness. To address this, the present thesis describes and evaluates a

set of novel algorithms aimed at improving the robustness. The algorithms come under

two headings: fine-grained, glottal synchronous methods and coarse-grained, voice quality

detection methods. In terms of fine-grained methods a new algorithm, SE-VQ, has been

developed which is optimised for analysis of a range of voice qualities. While maintain-

ing the precision of the state-of-the-art on neutral speech, the new algorithm is shown

to significantly improve performance on creaky voice regions. SE-VQ is then utilised as

part of a novel LF model based parameterisation method (DyProg-LF) of estimated glot-

tal source signals. The dynamic programming algorithm used in DyProg-LF is shown to

avoid the common problem of inconsistencies in parameter trajectories and is shown to

provide better parameterisation than the state-of-the-art on both a carefully controlled

dataset with manually obtained reference values as well as on a larger speech dataset. For

coarse-grained methods, a new parameter, the Maxima Dispersion Quotient (MDQ), is

proposed for discriminating breathy to tense voice. MDQ was shown to outperform exist-

ing parameters for discriminating the voice qualities, particularly for continuous speech,

and also in terms of robustness to additive noise. A new method for detecting creaky voice

is also described which utilises two parameters derived from the Linear Prediction-residual

signal. These parameters are used as input features to a decision tree classifier which is

shown to significantly outperform the state-of-the-art on a range of speech data varying

in terms of speaker, gender, language, recording condition and speaking style. Finally, a

software package, the Voice analysis toolkit, which contains the algorithms developed as

part of this thesis, has been made publicly available. This has been done to encourage

usage of the newly developed algorithms in applied work and future algorithm evaluations.
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Chapter 1

Introduction

The human voice is perhaps the most powerful and ubiquitous mechanism for communi-

cating that exists. It is used for a wide variety of functions in spoken interaction from the

signalling of prominence in an utterance to the expression of affective states and attitudes.

The research documented in this thesis focuses on the development of analysis tools for the

modelling and characterisation of targetted aspects of the voice. Specifically, this thesis

is concerned with the effect of the glottal source, emanating from vibration of the vocal

folds, and its impact on the speech signal. Furthermore, this research is concerned with

the variation and dynamics of the glottal source contribution and its effect on perceived

voice quality. Note that the research does not extend to singing or disordered voices but

instead is dedicated to the effective characterisation of the glottal source and voice quality

variation in non-pathological speech.

Accurate acoustic characterisation and modelling of the glottal source is desirable for

a range of applications including linguistic analysis tools, and as acoustic features used

in speech technology (e.g., speech synthesis, voice modification, speaker identification).

However, the potential of acoustic features relating to the glottal source and voice quality

has yet to be fully exploited in these areas. This is largely due to a perceived lack of

robustness in automatic analysis methods.

It follows that the purpose of this thesis is to develop more robust algorithms for

analysing different aspects of the glottal source contribution. The analysis methods de-

veloped and evaluated come under two main headings: fine-grained methods and coarse-

grained methods. Fine-grained methods refers to the analysis at the level of individual

glottal pulses produced by vocal fold vibration at the level of the glottis. A new algorithm

is proposed for detecting glottal closure instants (GCIs) suitable for a wide range of voice

types. This is then used as part of a novel method for automatic parameterisation of the

1
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glottal source, which is designed to simulate the strategies used in labour-intensive manual

analysis. There then follows a comprehensive empirical evaluation of glottal source-vocal

tract filter decomposition as well as glottal source parameterisation methods. Coarse-

grained methods, on the other hand, refers to the detection of perceivable changes in

voice quality given rise to by substantial changes in phonation type. Novel algorithms are

proposed for differentiating breathy-to-tense voice, as well as for detecting creaky voice.

Furthermore, these algorithms are evaluated in terms of robustness to degraded conditions.

The algorithms described in these two parts of the thesis, although distinct from one

another, can be used to provide complementary descriptions and modelling of the voice.

For the fine-grained methods one can obtain precise detail on the changes in the glottal

source from pulse-to-pulse. However, these methods typically require high quality record-

ing conditions. At the same time it is widely believed that speakers vary their vocal timbre

considerably more in natural conversational settings, which are often likely to be recorded

in less than ideal conditions. The approaches described in the coarse-grained methods part

of the thesis are, hence, designed for the purpose of detecting changes in voice quality and

evaluated in terms of robustness to simulations of degraded recording conditions. As a

result these approaches can be used to study and model naturally occurring changes in

the voice.

A concrete example can be useful to illustrate how the combination of these two ap-

proaches could be exploited in terms of a specific application. One can consider the speech

technology application of statistical parametric synthesis. New synthesis platforms have

been developed which involve the use of a glottal source model which can be altered in

order to approximate an alternative voice quality. However, two problems exist. On the

one hand, there are known problems with the automatic glottal source modelling used in

these applications. The algorithms described in the fine-grained methods part may con-

tribute to improving glottal source modelling, and potentially providing a more natural

rendering of the speaker’s vocal timbre. On the other hand, although these new plat-

forms have been developed which facilitate flexibility in terms of the voice, it is not clear

how exactly the voice should be varied, and for what communicative function. A simple

linear alteration of the glottal source model shape is unlikely provide much value. By ex-

ploiting the algorithms described in the coarse-grained methods part, one could study and

model how speakers dynamically vary their voice quality in natural conversation settings.

This information could then be used to instruct how the glottal source should be varied

for particular communicative functions. Such an approach may be useful for developing

expressive and conversational parametric speech synthesis.

The methods described in this thesis are, however, not designed solely for any one spe-
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cific application and it is envisaged that they may be suitable for a broad range of uses.

Nevertheless, the development of these approaches has not been completely without con-

sideration of potential uses. To illustrate this, each experimental chapter which proposes a

novel analysis method (i.e. Chapters 4 - 5 and 7 - 8) concludes with a short description of

how these methods could be applied and, in many cases, how these methods have already

been exploited in speech applications following collaboration with fellow researchers. Fur-

thermore, in order to encourage use of the developed algorithms, the Matlab code for the

various methods has been made available online1 in the form of a Voice analysis toolkit.

The thesis is organised as follows: The next two chapters provide a comprehensive

review of the literature of this area, in terms of the physiology and acoustics of speech

and then of the importance of the glottal source in spoken communication and speech

technology. These two chapters make up the first part of the thesis. The second part,

fine-grained methods, begins with a study on the development of glottal closure instant

(GCI) detection for a range of voice qualities (Chapter 4). There then follows a chapter

describing a new method for automatically parameterising the glottal source (Chapter 5).

This thesis part is concluded with a large evaluation of the different automatic methods

used in glottal source analysis (Chapter 6). The third part, coarse-grained methods, has

an initial chapter describing and evaluating a method for differentiating breathy-to-tense

voice qualities by utilising features of the wavelet transform (Chapter 7 ). The next chapter

describes an approach for detecting creaky voice in speech signals (Chapter 8). The final

part of the thesis provides a general discussion of the findings in this thesis (Chapter 9).

The potential impact of the developed methods is described and the future directions of

this line of research are outlined.

Contributions of this thesis

A summary of the main contributions of this thesis is now given.

1. Glottal closure instant detection algorithm suitable for a range of voice

qualities: In Chapter 4 a new algorithm is proposed for automatically detecting

glottal closure instants (GCIs) on a range of voice qualities. Most studies on GCIs

tend not to focus on evaluation on speech data containing high variability of voice

quality. However, the glottal closing characteristics of different voice qualities can

significantly affect the performance of GCI algorithms. The proposed method applies

a dynamic programming algorithm to help improve the selection of Linear Prediction

1https://github.com/jckane/Voice_Analysis_Toolkit
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(LP) residual peaks. This is particularly important when there are no prominent

LP-residual peaks as is often the case in breathy and harsh voice. Furthermore,

a post-processing procedure is used to remove false positives which often occur in

creaky voice.

2. LF model fitting algorithm based on dynamic programming: In Chapter 5

an algorithm is described for fitting LF model pulses to an estimated glottal source

signal. One common problem for model fitting algorithms is the consistent setting

of the glottal opening instant. The proposed algorithm exploits a dynamic program-

ming algorithm in order to avoid sudden changes in the model settings in speech

regions with relatively high stationarity. The setting of the parameters of the dy-

namic programming algorithm was done following analysis of the strategies used

on reliable reference data obtained by manual analysis. The new algorithm was

shown to perform favourably compared to two comparison method both in terms of

a quantitative evaluation and more qualitative one.

3. Novel measurement for differentiating breathy-to-tense voice: A parameter

for differentiating breathy to tense voice is proposed in Chapter 7 based on features of

a wavelet transform. Maxima derived following wavelet decomposition are often used

for detecting edges in image processing, where locations of these maxima organise in

the vicinity of the edge location. Similarly for tense voice, which typically displays

sharp glottal closing characteristics, maxima following wavelet analysis are organised

in the vicinity of the glottal closure instant (GCI). Contrastingly, as the phonation

type tends away from tense voice towards a breathier phonation it is observed that

the maxima become increasingly dispersed. The proposed parameter is designed to

measure the extent of this dispersion and is shown to compare favourably to existing

parameters, particularly for analysis of continuous speech.

4. Novel algorithm for automatically detecting creaky voice: In Chapter 8

a method for automatically detecting regions of creaky voice in a speech signal

is described and evaluated. The detection of creaky voice is obtained using two

parameters, which are derived from the LP-residual input through a resonator, as

input feature to a binary decision tree classifier. The method is evaluated on a range

of speech data varying in terms of speaker, gender, language, recording condition

and speaking style, and is shown to significantly outperform the state-of-the-art.

5. Voice analysis toolkit: A final contribution of this thesis is a toolkit containing

the above algorithms which has been made publicly available. This has been done to
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encourage usage of the methods described in the thesis and to exploit any subsequent

feedback to refine and improve these methods. The README file for the toolkit is

given in Appendix B.
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Chapter 2

Production, acoustics and acoustic

modelling of speech

2.1 Speech production

The production of speech is often described in terms of three physiological components:

the respiratory system, the larynx and the supralaryngeal vocal tract (Lieberman and

Blumstein, 1988, Chap. 2). The remainder of this section will provide a brief overview of

physiological and acoustic aspects of these separate components. As this thesis is primarily

concerned with the phonatory aspects of speech, a longer amount of time will be spent

discussing the larynx including a review of the physiological mechanisms of a range of

phonation types.

2.1.1 The respiratory system

All aspects of speech require the production of an airstream at the lungs which is then

modified by different parts of the vocal system (Hardcastle, 1976). Inspiration typically

involves a sudden increase in lung volume, followed by a relatively constant decrease during

expiration. During the rapid inspiration phase the external intercostal muscles and the

diaphragm aid the expansion of the lungs (Titze, 1994). Titze (1994) outlines three phases

during expiration. In the first stage the outward movement of the lungs and the ribs (so

called elastic-recoil) controls the lung pressure. Next the intercostal muscles are used to

put pressure on the lungs as the strength of the elastic-recoil reduces. The final phase also

involves the use of the intercostal muscles and often in combination with the back muscles

to force further air out (Hoit and Hixon, 1986).

8
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This repetitive process provides the airflow which is subsequently modified by the rest

of the vocal apparatus during speech.

2.1.2 The larynx

The first structure to modify the flow of air passing out of the lungs is the larynx (Hard-

castle, 1976). The larynx is located in the neck and consists of soft tissue protected by

cartilage. The different laryngeal cartilages and muscles are shown in Figure 2.1 with a

schematic illustration of the muscular tensions relevant to speech in Figure 2.2. The vocal

folds are located within the larynx and the orifice between them is called the glottis. The

opening and closing of the glottis is largely determined by the settings of the laryngeal

musculature. A summary of the main muscular tensions exploited by speakers during

phonation is given with reference to Figures 2.1 and 2.2:

• Adductive tension: is caused by the tension between the oblique and transverse inter-

arytenoid muscles (see the top right panel in Figure 2.1) which pulls the arytenoids

together (Gobl, 1989).

• Medial compression: controls the closure of ligamental glottis (see bottom right panel

of Figure 2.1). Medial compression is controlled by the lateral cricoarytenoid muscle

and also by the external thyroarytenoid muscle. In order to achieve closure of the

cartilaginous glottis however, there also needs to be adductive tension (Laver, 1980).

• Longitudinal tension: is the result of contraction of the vocalis and the cricothyroid

muscles which controls the tension of the vocal folds (Laver, 1980).

The myoelastic-aerodynamic theory, described by van den Berg (1958), has often been

used to explain the vibration of the vocal folds. Starting from a shut position, with the

vocal folds held together by adductive muscular tension, they are then forced apart due

to an increase in subglottal pressure (Hardcastle, 1976). As the air passing through the

glottis increases in speed, a pressure difference is created, known as the Bernoulli effect.

This is combined with the elastic forces of the vocal fold tissue which ‘sucks’ the vocal folds

together. However, it has been pointed out that the myoelastic-aerodynamic theory is not

sufficient to explain how the vocal fold oscillation is self-sustained and further explanation

on this are given in Titze (1994).
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Voice quality and phonation types

The use of terminology relating to voice quality varies considerably in the literature. To

minimise potential confusion, the terms and definitions used in this thesis are, as far as

possible, consistent with the descriptions in Laver (1980). Thus, voice quality refers to the

auditory colouring of a persons voice, although this research is primarily concerned with

voice quality variation brought about by changes in laryngeal activity. Changes in the

tension settings of the laryngeal musculature will give rise to different phonation types.

The term modal voice is used to depict a neutral phonation type, involving moderate

levels of laryngeal tension, periodic vocal fold vibration with a minimum of pulse-to-pulse

irregularities, efficient glottal excitation with full or essentially full glottal closure, and

no audible frication noise (Gobl and Nı́ Chasaide, 1992). A phonation type deviating

considerably from this description will be considered non-modal.

Laver (1979) describes a speaker’s voice quality as being composed of the longer-

term setting of the vocal system combined with dynamic shifts in the system used for

communicative purposes. Ladefoged (1960) initially used the term organic when referring

to the individuals unique physical features that affects the quality of their voice, e.g., vocal

tract length, size of tongue, shape of laryngeal structures, etc. Voice quality, as a result of

these organic features, is then varied as part of the person’s speaking habits (Abercrombie,

1967). An overview of the laryngeal physiology involved in different phonation types is

now given along with a description of the resulting acoustic characteristics. A description

of the use of voice quality in speech communication given in Chapter 3.

Modal voice

Modal voice is the type of phonation which is effectively normal 1 sounding phonation.

Catford (1964) describes modal voice as having both the ligamental and cartilaginous

glottis “functioning as a single unit”.

It is described as being the most ‘efficient’ form of phonation produced using moderate

adductive tension, medial compression and longitudinal tension. Increased longitudinal

tension is mainly used to increase pitch (van den Berg, 1968). The vibration of the

vocal folds is often quasi-periodic, with minimal frication and full glottal closure (Gobl,

1989). As stated previously, other phonation types will be described in reference to this

description of modal voice. The sequence of phonation types will roughly follow a lax to

tense continuum starting with whisper/whispery voice. Falsetto, which does not fit clearly

1The use of ‘normal’ is discouraged as it suggests that other voice qualities are abnormal (Laver, 1980,
p. 109)
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into this sequence will be described last.

Whisper and whispery voice

Whisper is typically reported to involve a triangular opening of the glottis demonstrating

an upside-down Y shape (Pressman, 1942; Luchsinger and Arnold, 1965; Laver, 1980).

Achieving this shape is thought to involve low adductive tension and moderate to high

levels of medial compression (Laver, 1980). The constant flow of air through this con-

striction and the resulting turbulence produces the perceived quality of whisper (van den

Berg, 1968). Studies in the literature often discriminate types of whisper based on vocal

effort (Monoson and Zemlin, 1989; Solomon et al., 1989); e.g., True whisper (low-effort)

and stage whisper (high-effort) usually produced by actors when wishing to portray the

form of whisper while being sufficiently loud to be heard by an audience (Obin, 2012).

Whisper can be combined with modal voice to create the compound whispery voice

(Laver, 1980). In whispery voice although the triangular opening is thought to be main-

tained, the ligamental portion of the glottis closes during each glottal cycle. Note that in

whisper there is a complete absence of periodic vocal fold vibration, whereas in whispery

voice there is indeed periodic vibration along a portion of the vocal fold length.

Figure 2.3 shows a broadband spectrogram of the same utterance produced by a male

speaker in modal voice (top panel) and in whisper (bottom panel). The lower formant

patterns of the two utterances are clearly similar. However, for the modal utterance one

can observe vertical lines corresponding to the individual glottal pulses which are not

present for the utterance produced with whisper.

Breathy voice

Breathy voice is perhaps the most studied non-modal phonation type (Hanson et al., 2001).

During breathy phonation the vocal folds vibrate in a more inefficient 2 manner and the

vibration is accompanied by audible frication. In terms of the muscular tension there is

believed to be minimal adductive tension and low medial compression (Laver, 1980). The

glottis can undergo incomplete closure as a result of reduced muscular tension, which can

allow a constant jet of turbulent air to pass through the glottis. This incomplete closure

usually manifests itself as a gap in the posterior portion of the vocal folds (Zemlin, 1964).

Although the size of this gap reduces as the phonation type moves in the direction of

tense voice, there may still be a gap during speech where there is no audible sensation of

2Inefficient here refers to the need for increased effort required to produce the same amount of power
in their speech signal
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Figure 2.3: Broadband spectrogram of the utterance I will allow a rare lie produced in
modal voice (top panel) and whisper (bottom panel) by a male speaker.

aspiration noise (Chen et al., 2011).

When breathiness is perceptually noticeable the speech signal typically has certain

acoustic attributes and Klatt and Klatt (1990) outlined some of these main features. One

feature is increased first formant (F1) bandwidth. This is likely to be due to increased

losses at the glottis during the open phase of the glottal cycle (Fant, 1979). A rough

correlate of F1 bandwidth, suggested in Hanson (1997), involves subtracting the amplitude

of the harmonic closest to F1 from the speech spectrum from the amplitude of the first

harmonic from the differentiated glottal source spectrum (i.e. H1∗-A1).

Another feature of breathiness, as a result of non-simultaneous closure along the length

of the glottis (Laver, 1980), is the impact on the spectral tilt in the mid to high frequencies

(Hanson, 1997). Typically breathiness will produce steeper spectral tilt, compared with

modal voice. Hanson (1997) suggest an acoustic correlate of this by subtracting the am-

plitude of the harmonic closest to the third formant, taken from the differentiated glottal

source spectrum, from the amplitude of the first harmonic, also from the differentiated

glottal source spectrum (i.e. H1∗-A3∗).

Further evidence of breathiness in a speech signal comes from the turbulent air pro-

duced at the glottis. Klatt and Klatt (1990) stated that if a speech signal is bandpass

filtered in the third formant region this noise feature becomes visually apparent in the

speech waveform and suggested a subjective four point rating scale for describing this.
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Figure 2.4: Breathy (left column) and modal (right column) /a/ vowel produced by a male
speaker and bandpass filtered in the first formant (top row) and third formant (bottom
row) regions.

This observation is illustrated in Figure 2.4, where both breathy and modal vowels band-

pass filtered in the first formant region show periodic behaviour. Contrastingly, for the

breathy vowel bandpass filtered in the third formant region the outputted waveform is

extremely noisy, compared to the highly periodic filtered modal vowel. Researchers have

since attempted to formalise this measurement. One notable attempt is the use of a three

point shimmer measurement (Amplitude Perturbation quotient) on the bandpass filtered

signals (Ito, 2004). A more recent approach to this has involved comparing synchronicity

of the amplitude envelopes of the speech signal bandpass filtered at around F1 and one

bandpass filtered around F3 through the use of cross-correlation (Ishi et al., 2010).

The perceptual importance of acoustic correlates of breathy voice were investigated

Gobl and Nı́ Chasaide (1999b) where it was found that spectral tilt was the main factor

contributing to the perception of breathiness. A perhaps unexpected finding in that study,

particularly given observations in the previous paragraph, was that the aspiration noise

parameter in the KLSYN88 synthesiser (Klatt, 1980) contributed little to the perception
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of breathiness. However, given the difficulty of modelling aspiration noise, particularly in

terms of the frequency and time domain modulation of a noise source, this finding may be

more due to the model of aspiration noise in the KLSYN88 synthesiser and not aspiration

noise in human speech production.

Tense voice

The above voice qualities were described in terms of their laryngeal physiology as phona-

tion was the main factor in producing the perceived voice quality. Tense voice, however,

is generally thought of as involving elevated tension settings throughout the entire vocal

system (Laver, 1980). At the laryngeal level, the increased tension may sometimes result

in a phonation type which can be adequately described as harsh voice. However, compared

to harsh voice, the increase in laryngeal tension in tense voice is typically less extreme,

and may not give rise to the characteristic irregularities in vocal fold vibration associated

with harsh voice (Laver, 1980). Hence, tense voice is here used to refer to a voice quality

produced by an increase in the tension settings compared to modal voice, but which does

not display the irregular vocal fold vibration associated with harsh voice.
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Figure 2.5: Amplitude spectrum of the differentiated glottal source signal, estimated by
inverse filtering, of the same vowel produced in modal voice (left panel) and tense voice
(right panel) by a male speaker. Note that the amplitude of the two spectra has been
normalised to facilitate visual comparison of the spectral roll-off.

In terms of the acoustic characteristics, tense voice typically displays a less steep spec-

tral slope (this can be observed in differentiated glottal source spectra for modal and tense

voice in Figure 2.5). The spectrum displays a stronger harmonic richness with more par-

tials exceeding the noise level in the higher frequencies than in modal voice (Gobl and Nı́
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Chasaide, 1992). Also, as can be seen in Figure 2.5, the amplitude of the second harmonic

can be higher than that of the first (Hanson, 1997).

Harsh voice

Harsh voice is thought to be a result of excessive vocal fold tension and is often produced

with a low pitch (Van Riper and Irwin, 1958; Zemlin, 1964). There is likely to be extreme

adductive tension and medial compression (Brackett, 1940), essentially over contraction

of the muscle tensions involved in modal voice (Laver, 1980). Harsh voice, however, is

believed to involve other aspects of the larynx than just the glottis. Esling and Harris

(2003), following inspection of laryngoscopic images, suggest that, in the 21 tone of Bai,

constriction of the laryngeal sphincter in the epilaryngeal tube can be applied, sometimes

with aryepiglottic trilling. Note that above the ventricular folds (see side view in Figure

2.1) is where the aryepiglottic folds are located. Harsh voice is sometimes referred to as

ventricular voice, when produced with a high pitch.
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Figure 2.6: Speech waveform of a segment of an utterance by a male speaker produced
with harsh voice.

Harsh voice is known to display irregularities in terms of amplitude and frequency of

successive glottal pulses (Wendahl, 1964; Laver, 1980; Ishi et al., 2008a), often referred to

as diplophonia. Such irregularities in amplitude are illustrated in Figure 2.6. In particular

these pulse to pulse fluctuations in amplitude are thought to affect the ‘rough’ sensation of

harsh voice (Wendahl, 1964). This modulation in amplitude may contribute to distorting

the perception of pitch in harsh voice (Warren, 1982). The strong presence of noise in the

speech spectrum is also thought to be characteristic of harsh voice (Fairbanks, 1960).
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Creaky voice

Creaky voice is sometimes referred to as vocal fry, glottal fry or laryngealisation. It has been

suggested that creaky phonation involves strong adductive tension and medial compression

and low longitudinal tension (Fǿnagy, 1962) as well as low subglottal pressure (Monsen

and Engebretson, 1977), compared to modal voice. It is typically produced with a lower

fundamental frequency. Ladefoged (1971) states that during creaky phonation only the

anterior parts of the vocal folds vibrate while the posterior parts are held together.

Some further insights into the physiology involved in creaky voice production were

highlighted in Edmondson and Esling (2006), including the occurrence of ventricular in-

cursion. Ventricular incursion is when the ventricular folds push down and cover the true

vocal folds, causing an increased mass and, as a result, lowers the frequency of vibra-

tion (Moisik and Esling, 2011). This ventricular incursion can also result in secondary

vibrations occurring above the glottis.

An often referred to, impressionistic description of the perception of creaky voice is

given by Catford (1964): “ a rapid series of taps, like a stick being run along a railing”.

However, the auditory criterion for creaky voice applied in this thesis is: “a rough quality

with the sensation of additional impulses”, which comes from Ishi et al. (2008b).

Many of the resulting acoustic characteristics of creaky voice are clearly distinct from

modal voice. One of these features is the very long glottal pulse duration (where pulses can

occasionally be as long as 100 ms, see Hollien and Wendahl, 1968; Blomgren et al., 1998).

Such findings are corroborated by the results of psychoacoustic experiments carried out in

Titze (1994), which demonstrated that human listeners begin to perceive individual pulses

from around 70 Hz. Another acoustic feature often reported is the presence of secondary

excitations, shown in electroglottographic (EGG) and speech pressure signals (Blomgren

et al., 1998) as well as in glottal source signals estimated by inverse filtering (Gobl and Nı́

Chasaide, 1992). These secondary excitations may perhaps be explained by the occurrence

of ventricular incursion, mentioned above. A further observation is that there is little or no

superposition of formant oscillations between adjacent glottal pulses (Ishi et al., 2008b).

One can frequently observe that oscillations from the vocal tract resonances have almost

completely decayed before the start of the next pulse.

Note that different temporal excitation patterns can result in the perception of creaky

voice. In certain cases, the fundamental frequency drops below a certain auditory threshold

and reasonably periodic vibration is maintained. In other cases, the periodicity is highly

irregular, often involving spells of diplophonia. In order for the perception of creaky voice,

as opposed to harsh voice, a certain amount of glottal pulses need to have a very low
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Figure 2.7: Speech waveform (top panel), derivative EGG (middle panel) and LP-residual
(bottom panel) for a sentence containing creaky voice from around 1.22 seconds.

frequency.

These distinctive acoustic characteristics can cause problems for standard speech anal-

ysis methods (including f0 tracking and spectral analysis). The very low f0 values and, at

times, irregular temporal patterning may not be properly handled by standard f0 tracking

algorithms. Furthermore, standard frame lengths (usually no longer than 32 ms) may be

too short to capture two creaky glottal pulses lengths and, hence, will be unsuitable for

obtaining strong periodicity information. As a result of this, creaky regions will be poorly

modelled in most speech technology applications.

Some of these features are illustrated in Figure 2.7. Note that although there are paired

LP-residual peaks in the creaky region (from around 1.22 seconds) the derivative EGG

signal does not display secondary peaks.

Falsetto

van den Berg (1968) states that falsetto is a phonation type involving stronger amounts

of adductive tension, medial compression and longitudinal tension compared with modal
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voice. This was later corroborated by Esling (1984). Perhaps due to the increased longitu-

dinal tension, the vocal folds become thin (Laver, 1980) and a reduced level of sub-glottal

pressure is applied compared to modal voice (Van Riper and Irwin, 1958). Falsetto is typ-

ically associated with a high pitch resulting in short glottal pulses (van den Berg, 1968)

and it is also reported to display a steeper spectral slope (Monsen and Engebretson, 1977).

2.1.3 The supralaryngeal vocal tract

The supralaryngeal vocal tract consists of the cavities above the larynx including the phar-

ynx, the buccal cavity and the nasal cavity and is highly adaptable particularly through

movement of the jaw, tongue and lips (Flanagan, 1972). The main articulatory organs

in the vocal tract are: the tongue, the mandible, the velum and the lips. The fastest

articulator is believed to be the tip of the tongue (Hudgins and Stetson, 1937).

Variation in position of the various articulators of the vocal tract have the important

function of modifying the sound source created at the larynx (Hardcastle, 1976). For stop

consonants a complete closure is created, which is followed by a build of air pressure and

then a sudden release of air. The location of the occlusion determines where the turbulent

noise is created which, in turn, affects the phonetic quality of the sound (Flanagan, 1972).

Placement of the vocal tract articulators can also produce narrow constrictions at which

point the airflow becomes turbulent giving rise to fricatives. Again the location of the

constriction determines the phonetic quality of the consonant.

For nasal consonants the velum is opened and this is combined with complete closure

of the vocal tract further forward, usually at the location of the velum, between the tongue

and the alveolar ridge or at the lips (Flanagan, 1972).

2.2 Acoustic theory of speech production

The acoustic theory of speech production, described by Fant (1960), provides a theoretical

framework on which much of the work on glottal source analysis is based. Fant (1960)

describes a theory which allows for the functional separation of the speech production

process into two main components: source and filter. This separation into two largely

independent components allows the researcher to apply straightforward mechanisms from

acoustic and electrical engineering theory. Since the initial publication in 1960, the the-

ory has led to a large number of studies that have improved our understanding of the

production of spoken language.

The theory facilitates a convenient close comparison of the engineering terms: source
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and filter with the phonetic terms: phonation and articulator, respectively. From this,

the source in voiced speech relates closely to the modulation of airflow by the vocal folds

whereas the filter corresponds to what the listener perceives as the phonetic quality of the

spoken utterance.

By applying the theory it is possible to decompose the speech waveform by removing

the filter component (this is discussed further in Section 2.3.1). The residual signal is called

the voice source or glottal source waveform. In the z-domain the source-filter theory can

be stated as:

S(z) = G(z)V (z)L(z) (2.1)

where the speech spectrum, S(z), is the result of the spectral multiplication (or time do-

main convolution) of the glottal source, G(z), the vocal tract filter, V (z), and lip radiation,

L(z). Note that this representation of speech considers the excitation source for speech as

beginning at the level of the larynx and does not explicitly model subglottal pressure from

the lungs. The three components of the source-filter model of speech are a simplification

of both the physiological mechanisms and the resulting acoustics. These three components

are now described separately.

2.2.1 Glottal source

In the source-filter model the glottal source, G(z), provides the excitation for the linear

system. The glottal source is a model of the glottal flow, which is the airflow emanating

from the lungs and modulated by the glottal area (Titze, 1994). The subglottal pressure

from the lungs is not explicitly modelled and comes within G(z). As is done elsewhere

in the literature (see e.g., Degottex, 2010) the glottal source, G(z), is treated as a signal

description of the glottal flow which operates independently of changes in the vocal tract.

The glottal source is mainly in two states: voiced or unvoiced. In its voiced stated G(z) is a

model of quasi-periodic vocal fold vibration, as well as any other laryngeal vibration which

is used to excite the vocal tract system. The excitation of unvoiced speech is determined

by the airflow becoming turbulent after passing through a narrow constriction, and this

will be at different locations in the vocal tract depending on the phoneme (e.g., for /f/

the air will become turbulent at the labio-dental constriction (Flanagan, 1972).
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2.2.2 Vocal tract filter

The vocal tract filter, V (z), of the source-filter description models the effect of the suprala-

ryngeal vocal tract. The vocal tract is sometimes treated as a uniform one-dimensional

tube, open at one end, with lossless wave propagation. With this treatment, planar wave

propagation can be assumed (Rabiner and Schafer, 1978) and it is also assumed that the

vocal tract has the greatest cross dimension of less than a wavelength (i.e. for frequencies

less than around 4 kHz, Flanagan, 1972).

This description of the vocal tract can be modelled using an all-pole model. Digitally

this modelling of V (z) involves p complex conjugate poles (Oppenheim and Schafer, 1989):

V (z) =
1∏p/2

k=1(1− ckz−1)(1− c∗kz−1)
(2.2)

where ck and c∗k are the complex conjugate pairs of the kth formant.

Despite its simplification, the all-pole vocal tract model has seen wide application

in speech processing (El-Jaroudi and Makhoul, 1991; Alku, 1992). However, it is widely

believed that pole-zero pairs are required for proper modelling of nasalised sounds (Konva-

linka and Mataušek, 1979; Xiaochuan et al., 2005). Recently developed speech processing

methods have adopted a minimum phase modelling of the vocal tract filter (Bozkurt et al.,

2005; Drugman et al., 2009a; Degottex et al., 2011a). This approach assumes that both

poles and zeros exist within the unit circle. If the vocal tract is lossless the zeros will to

lie on the unit circle (Lim and Lee, 1993). However, it can be hypothesised that the vocal

tract losses will move the zero inside the unit circle (Degottex, 2010).

2.2.3 Radiation at the mouth and nostrils

The final component of the source-filter model is the radiation characteristic which occurs

at the lips and/or nostrils. The radiating area around the lips and nostrils can be assumed

to have a uniform velocity distribution and can be treated as a vibrating surface with all

its parts moving in phase (Flanagan, 1972). Although more complex modelling can be

used, the approach in speech analysis is often to model the radiation effects as a simple

time derivative (Rabiner and Schafer, 1978; Wong et al., 1979; Markel and Gray, 1982):

L(z) = 1− αz−1 (2.3)

where α is set here to 0.98. This corresponds to a single zero on the real-axis, just inside

the unit circle. Although this filter is not strictly independent of sampling frequency, for
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the range of sampling frequencies used in the current thesis (i.e. 10 kHz and 16 kHz) the

difference is treated as being essentially negligible.

Using this model of the radiation effects one can considered the derivative glottal flow,

G′(z), as:

G′(z) = G(z)L(z) (2.4)

and, hence, Eq. (2.1) can be reduced to:

S(z) = G′(z)V (z) (2.5)

This reduction can be convenient as some glottal source models (e.g., the Liljencrants-

Fant model, Fant et al., 1985a) model the glottal flow derivative.

2.2.4 Limitations of the theory

The separation of source and filter into two largely linear time-invariant (LTI) components

is, however, an over-simplification of what actually occurs. Even if short segments of

speech can be treated as time-invariant there are non-linear components involved. These

non-linearities are due to source filter interaction effects and were the focus of research

for part of the Ph. D. thesis by Lin (1990, Chap. 5). This acoustic interaction can result

in a particular source pulse being affected by previous vocal tract oscillations (Fant and

Lin, 1987). These interaction effects have three main consequences. Skewing of the glottal

source pulse can occur (Fant and Lin, 1987; Rothenberg, 1981), which typically contributes

to a stronger glottal excitation (Gobl, 2003). There may be a ripple effect imposed on the

pulse from transglottal pressure variation as a result of formant oscillations from previous

glottal pulses (Fant and Lin, 1987). Changes in formant frequencies and bandwidths

within a single pulse duration can result in damping or truncation in the glottal pulse

(Ananthapadmanabha, 1984; Fant et al., 1985b).

These interaction effects have been included in speech synthesis systems, but experi-

ments have demonstrated only a slight difference in terms of the perception of the output

(Nord et al., 1984, 1986; Lin, 1990).

The basis for the source-filter theory has been challenged most notably by Teager

and Teager (1983, 1990). Teager and Teager (1990) argue that the production of speech

is neither linear nor passive and that assuming as much would lead to erroneous and

inconsistent conclusions.

Despite this, the evidence produced from speech research in the years since its inception
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support the usefulness of characterising speech in this way (Gobl, 2003). Furthermore,

many functional speech technology applications have been designed by exploiting the

theory (see e.g., Cabral et al., 2011b; Raitio et al., 2011; Degottex et al., 2011a).

2.3 Characterising the glottal source

Many approaches to analysing the glottal source and voice quality involve exploiting the

source-filter theory by attempting to separate the vocal tract filter effects from the speech

signal and parameterising the residual (i.e. the glottal source estimate). This section

reviews the most commonly use methods for source-filter decomposition and glottal source

parameterisation.

2.3.1 Glottal inverse filtering

Glottal inverse filtering is the process of estimating the glottal source by deconvolution of

an estimated vocal tract model from the speech signal. Modern glottal inverse filtering

methods generally fall into three main categories: closed-phase methods, iterative methods

and phase based methods. Note that three of the inverse filtering methods described

here are evaluated in Chapter 6. Despite the attention the problem of glottal inverse

filtering has received from the literature it is still believed that a fully functional automatic

glottal inverse filtering method is yet to be developed (Walker and Murphy, 2007). In the

discussion below a brief comment is given on the limitations of the various approaches.

It may become apparent to the reader that despite a concerted effort from the research

community involving a range of signal processing methods, glottal inverse filtering is yet

to solved to a satisfactory level. As a consequence there may frequently be gross errors in

the glottal source estimate which limit the effectiveness of subsequent parameterisation.

Closed-phase inverse filtering

Initial papers by Strube (1974) and Wong et al. (1979) looked to exploit the so-called

‘closed-phase’ region within each glottal pulse cycle as a means of deriving the vocal tract

transfer function. During the glottal open-phase, where the vocal folds are apart, there

is a certain amount of interaction between the glottal source signal and the vocal tract

system with relatively strong damping of the vocal tract resonances (Yegnanarayana and

Veldhuis, 1998). After the glottal closure instant (GCI, Naylor et al., 2007) and up until

the moment of glottal opening, there is vocal tract resonance relatively free of effects from

the glottal source. If this closed-phase region can be detected a covariance based Linear
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Predictive Coding (LPC) approach (Rabiner and Schafer, 1978) can be used to determine

an all-pole vocal tract model.

Several problems exist for the practical implementation of such a glottal inverse filtering

approach. One is the difficulty in determining the closed-phase region. An algorithm was

proposed in Alku et al. (2009) to improve the robustness to errors due to frame position

by incorporating constraints in the model optimisation. Also, recent algorithms have been

developed to improve the detection of the frame position (see Thomas et al., 2012 and

Drugman et al., 2012c). However localisation of the glottal opening instant (GOI) is

still significantly less robust than that of the GCI. Furthermore, in phonation types like

breathy voice the vocal folds may not fully close making the detection of functional GCIs

and GOIs all the more difficult. Another problem is that for speech with high f0 values the

duration of the closed-phase may be insufficient for stable vocal tract model estimation.

To overcome this, a multicycle covariance method has been proposed (Yegnanarayana

and Veldhuis, 1998; Plumpe et al., 1999) which involves combining closed-phase regions

from neighbouring glottal pulses. Despite the improvements offered by this approach the

performance of closed-phase inverse filtering still tends to degrade for signals with high f0

values.

A closed-phase inverse filtering (CPIF) algorithm can be implemented as follows: GCIs

and GOIs are detected (e.g., using the algorithm described in Drugman et al., 2012c which

demonstrated improved robustness in determining these locations). Using the detected

closed-phase, as marked by the GCIs and GOIs, covariance LPC analysis is carried out

using: (
K−1∑
k=0

Ck

)
a = −

(
K−1∑
k=0

ck

)
(2.6)

where Ck is the p× p covariance matrix and ck is the covariance vector of the kth closed-

phase region, a is the vector (length p) of the prediction coefficients and K is the number

of consecutive closed-phase regions used (Yegnanarayana and Veldhuis, 1998). In the

implementation used in this thesis, K is set to 3 (i.e. the present closed-phase and the

two adjacent ones) and the commonly used prediction order p = fs/1000 + 2 was used.

Iterative and adaptive inverse filtering

Several iterative algorithms have also been proposed for automatic inverse filtering. Re-

cently a method was described based on the ARX (Auto-Regressive eXogenous) LF model

for simultaneous estimates of glottal source and vocal tract models using iterative opti-
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misation. A commonly used method (see e.g., Cabral et al., 2011b; Raitio et al., 2011)

is the Iterative and Adaptive Inverse Filtering (IAIF) which is also included in this the-

sis. A block diagram of the algorithm is shown in Figure 2.8. In the present work the

algorithm is applied to GCI centred frames, of twice the local glottal period in duration.

The method works by successive vocal tract all-pole model estimation following the re-

moval of the estimated glottal source contribution modelled with a prediction order which

increases at each iteration. Originally prediction coefficients were determined by LPC

analysis (Alku, 1992). A subsequent study, however, replaced LPC with discrete all-pole

(DAP) modelling (El-Jaroudi and Makhoul, 1991), which involves the use of the Itakura-

Saito distance measure (Itakura and Saito, 1968), in order to produce a better modelling

of the spectral envelope for higher-pitch voices (Alku and Vilkman, 1994).

Despite the usefulness of the IAIF it can, nevertheless, output significant errors in the

estimation of the glottal source signal. In particular, for vowels with a low first formant

frequency (e.g., /i/) the interaction between the glottal formant and the first formant can

lead to incomplete resonance cancellation in the outputted waveform (Alku, 1992). As a

result any analysis of the estimated glottal source waveform will be negatively affected.

Mixed-phase decomposition

A final category of glottal inverse filtering involves decomposing the speech signal based

on maximum and minimum phase components. In Doval et al. (2003), the authors demon-

strate how the glottal source can be modelled as a combined causal-anticausal linear filter,

where a pair of poles lying outside the unit circle (i.e. anticausal) correspond to the glottal

formant and where a single pole lying inside the unit circle (i.e. causal) corresponds to

the spectral tilt. This initial modelling was then used as the inspiration for the all-zero

representation of the speech signal described in Bozkurt et al. (2005). Bozkurt et al. (2005)

proposed a method called Zeros of the Z-Transform (ZZT), which utilises the unit-circle

for separating zeros inside the unit circle (corresponding to vocal tract contribution and

return phase of the glottal source) from zeros outside the unit-circle (corresponding to the

open phase of the glottal source). A computationally more efficient method for separating

these causal and anticausal components, utilising the complex cepstrum, was described

in Drugman et al. (2009a). The complex cepstrum, ŝ(n) can be derived from the speech

signal, s(n), using (Oppenheim and Schafer, 1989):

S(ω) =
∞∑

n=−∞

s(n)e−jωt (2.7)
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Figure 2.8: Block diagram of the Iterative Adaptive Inverse filtering (IAIF) method.
Inputted is the speech signal, s(n), with an estimate of the glottal source derivative signal,
g′(n), as the output. Different prediction orders are used: p = fs/1000 + 2, g = 4 and
r = p

log[S(ω)] = log(|S(ω)|) + j 6 S(ω) (2.8)

ŝ(n) =
1

2π

∫ π

−π
log[S(ω)]ejωdω (2.9)

Deriving the estimation of the glottal source (open phase) is then carried out by simply

retaining the sample values below 0 quefrency.

The proper window position and type has been shown to be critical for suitable de-

composition and, hence, the settings suggested in Drugman et al. (2009a) are used. This

involves using a Blackman window, centred on a GCI and of two glottal periods in duration.

This method was demonstrated to perform strongly compared with the state-of-the-art in

a previous comparative evaluation (Drugman et al., 2011).

The main drawback of this approach is that there is no separation of the glottal return

phase from the vocal tract filter, as both components are believed to be minimum phase.
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For certain applications, e.g., parametric speech synthesis and voice modification, such a

separation is essential. Furthermore, certain phonation types (e.g., breathy voice) exhibit

glottal closing characteristics which can affect the robustness of GCI detection. As the

mixed phase decomposition critically relies on proper window positioning which is based

on the GCI, estimated glottal waveforms may be severely affected.

2.3.2 Glottal source models

The following is a brief description of the more commonly used models of the glottal source

signal which are used in the literature.

Rosenberg model

The Rosenberg glottal model (model B in Rosenberg, 1971) is calculated using:

gROS(t) =

{
at2 − bt3 if 0 < t < te = tc

0 if tc < t < T0
(2.10)

where te is the timepoint of the main excitation, tc marks the beginning of the closed

phase and T0 is the glottal period duration. The parameters a and b control the duration

of the open phase amplitude of voicing.

An example Rosenberg glottal model pulse is shown Figure 2.9 with the a parameter

set to be equivalent to an open quotient (OQ) of 0.6, and with and F0 of 100 Hz. Note

that this glottal model has an abrupt return to 0 following the main excitation. OQ is

defined here as the duration of the open phase normalised to the glottal period, i.e. te
T0

.
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Figure 2.9: Example Rosenberg glottal model pulse.
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KLGLOTT88 model

The formant synthesiser KLSYN88 (Klatt and Klatt, 1990) uses the glottal source model

KLGOTT883. The model is a third-order polynomial which can be smoothed using a

low-pass filter. The KLGOTT88 is essentially a low-pass filtered version of the Rosenberg

model, where the TL controls the spectral tilt of the model by setting the cut-off of a

first order low pass filter. In the KLSYN88 synthesiser further parameters control other

aspects of the glottal source model: AH; for determining the strength of aspiration noise,

DI; for setting the amount of diplophonic irregularity of pulse durations and FL; for causing

fluctuations in adjacent glottal pulse lengths.

LF model

The LF model (Fant et al., 1985a) is five parameter (including f0 and assuming tc = T0)

model of differentiated glottal flow that evolved from previous models developed by the

same authors (see Fant, 1979 and the L-model also described in Fant et al., 1985a). Besides

f0, the LF model can be derived from parameters which consist of three time points: tp,

te and ta as well as one amplitude value, EE (see Figure 2.104). The model is made up of

two components, the open-phase and the return-phase, and is calculated using:

g′LF (t) =

{
E0e

αtsinωgt for to ≤ t ≤ te open-phase
−EE
εTa

(e−ε(t−te) − e−εTb) for te < t < tc return-phase
(2.11)

where ωg is π
Tp

, Tb = tc − te, α and E0 are required to achieve area-balance (absolute area

of the two segments is always the same) and ε is derived iteratively using:

ε =
1

Ta
·
(
1− e−εTb

)
(2.12)

Full details for solving α and E0 are given in Gobl (2003) and Fant et al. (1985a). Both

optimisation parts, i.e. for solving ε, and α and E0 are done using the Newton-Raphson

method.

The shape of the LF model pulse can also be characterised with the three so-called

R-parameters: Rg, which is the frequency of the glottal formant normalised to f0, is

calculated using:

3Note that there are two other glottal models which can also be used in KLSYN88
4Note that for the LF model the glottal flow will rest exactly on the zero line. For natural glottal flow

pulses, and in particular in laxer or breathier speech, there may be a strong DC component resulting in
the glottal flow pulses being elevated off the zero axis.
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Figure 2.10: Example LF model pulse of glottal flow (top panel) and differentiated glottal
flow (bottom panel).

Rg =
T0
2Tp

(2.13)

where Tp is the duration from glottal opening to the peak amplitude (Figure 2.10).

Rk is a measure of glottal skew and is the inverse of commonly used speed quotient.

It is calculated as:

Rk =
te − tp
tp

(2.14)

where te is the time point of the main excitation. Note that another asymmetry parameter

also used in the literature is αm = Rk
Rk+1

(Henrich et al., 2001; Doval et al., 2006).

Ra defines the return phase and affects the level of attenuation of the higher frequencies

in the spectrum. Ra is related to the extent of ‘dynamic leakage’, which is the residual

airflow during the return phase (Gobl, 1988). Ra is derived with:

Ra =
Ta
T0

(2.15)

where Ta is the effective duration of the return phase.

A further R-parameter, Rd, was developed to provide a single parameter which cap-

tures most of the covariation of the LF model parameters (Fant et al., 1995). Rd is derived

using:



2. Production, acoustics and acoustic modelling of speech 30

Rd = 1000 ·
(
UP

EE

)
·
(
f0

110

)
(2.16)

where UP is the peak amplitude of glottal flow and EE is the negative amplitude of the

main excitation (differentiated glottal flow). The other R-parameters (Rg, Rk, Ra) can

be predicted from Rd, following the regression analysis described in Fant et al. (1995),

using the equations:

Rap = (−1 + 4.8Rd)/100 (2.17)

Rkp = (22.4 + 11.8Rd)/100 (2.18)

Rgp =
Rkp

4( 0.11Rd
0.5+1.2Rkp

−Rap)
(2.19)

Note these equations are expected to hold for Rd values below an upper bound of around 3.

For Rd values exceeding 2.7, Fant et al. (1994) suggest an amendment to these prediction

equations. However, for Rd values above this level, the generated LF model has already

begun to approximate a sinusoid.

The Open Quotient (OQ) parameter (originally proposed in Timcke et al., 1958), which

is thought to be useful for discriminating breathy and tense voice (Henrich et al., 2001;

Hanson et al., 2001), can also be derived from an LF model setting:

OQ =
Te
T0

=
1 +Rk

2Rg
(2.20)

R++ model

Presented as an efficient alternative to the LF model and derived from the previous Rothen-

berg model (Rosenberg, 1971) the R++ model was designed in an attempt to match the

flexibility of the LF model while at the same time improving computational efficiency

(Veldhuis, 1998). The R++ model is derived using the same parameters as used for de-

riving the LF model. Perception tests that were carried out in Veldhuis (1998) suggest

that there was little perceptual difference between synthetic speech generated using the

LF model and the R++ model. Although the model has been used in some studies (e.g.,

Doval et al., 2006) the LF model tends to be more commonly used.
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Causal anti-causal linear model

The causal anti-causal linear glottal flow model (CALM) is measured in the frequency do-

main (Doval et al., 2003). The authors believe that spectral based glottal source modelling

has a number of advantages over time based modelling, e.g., that voice quality is better

described by spectral parameters. Spectral tilt of the glottal source spectrum relates to

the causal part of the CALM model. Doval et al. (2003) state that this can effectively

characterise voice qualities in terms of loudness and weakness. The glottal formant corre-

sponds to the anti-causal component of the model and this can allow characterisation of

voice qualities in the tense to lax dimension.

Other glottal models

A range of other glottal source models have been proposed in the literature which have

not been covered in this section (e.g., Ananthapadmanabha, 1984; Titze, 1984; Allen and

Strong, 1985; Fujisaki and Ljungqvist, 1986; Shue and Alwan, 2010).

2.3.3 Glottal source parameterisation

A range of approaches have been proposed in the literature for parameterisation of the

estimated glottal source signal. They are typically either direct measurements from the

glottal source signal or are measurements derived from parametric models fit to the in-

dividual glottal source pulses (Strik, 1998). The different parameterisation methods can

often suffer from a lack of robustness and some comments on this are given in the discussion

below.

Direct measures

Time domain measurements of the glottal source are typically derived as quotients of the

glottal period. They can provide useful information to do with important physiological

timepoints in the glottal cycle. For instance, the open quotient (OQ) characterises the

relative duration of the glottal open phase. Another measurement, the closing quotient

(ClQ), is used as a relative measure of the glottal closing phase. However, the localisa-

tion of these timepoints is known to be problematic (Alku et al., 2002) and as a result

parameters derived from amplitude based measurements that correlate with time domain

quotients have been shown to improve robustness. The normalised amplitude quotient

(NAQ, Alku et al., 2002), for instance, is calculated with:
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Figure 2.11: Glottal flow (top) and glottal flow derivative pulse (bottom) with the measure-
ments required for deriving NAQ (fac and dpeak) and QOQ (quasi-open phase) highlighted.

NAQ =
fac

dpeak · T0
(2.21)

where fac is the maximum amplitude of the glottal flow pulse and dpeak is the amplitude of

the maximum negative amplitude of the glottal derivative pulse (see Figure 2.11). It has

been shown to be a strong correlate of ClQ and has been practically used for analysing

voice quality in non-ideal recording conditions (see e.g., Campbell and Mokhtari, 2003).

However, some of the findings in (Gobl and Nı́ Chasaide, 2003a) suggest that the ability

of NAQ to separate breathy and tense voice is reduced when there is high variability in

f0.

The quasi-open quotient (QOQ, Hacki, 1989) was developed as more robust measure

relating to the standard open quotient. It is calculated by detecting the peak in the glottal

flow and finding the time points previous to and following this point that descend below

50 % of the peak amplitude (see Figure 2.11). The duration between these time locations

is used as a ‘quasi-open phase’ and is divided by the local glottal period in order to derive

QOQ.

A number of parameters have also been developed which are derived from measure-

ments in the frequency domain. The difference between the first two harmonics (H1-H2) in

the narrowband amplitude spectrum of the differentiated glottal source signal is one such

parameter. Another spectral parameter is the harmonic richness factor (HRF, Childers

and Lee, 1991) which is measured as the sum of harmonic amplitudes above the first har-
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monic divided by the amplitude of the fundamental. A further parameter, the parabolic

spectral parameter (PSP, Alku et al., 1997), has been proposed for modelling the frequency

domain characteristics of the glottal source. PSP is derived by fitting a parabola to the

lower frequencies in the glottal source spectrum. Note, however, that the effectiveness of

these measurements can be negatively affected when there is incomplete cancellation of

lower formant resonance.

The above parameters rely on reliable estimation of the glottal source waveform. As

glottal inverse filtering is known to lack robustness in certain types of speech regions (see

Section 2.3.1) these parameters will often be negatively affected. Moreover, a circular

problem arises as the very purpose of these parameters is to characterise different phona-

tion types (e.g., breathy voice) and it is for these phonation types where their effectiveness

may be most reduced.

Model fitting

Given an estimate of the differentiated glottal source signal, g′(n), another way of charac-

terising the salient aspects of the signal is to fit a model to the individual glottal pulses.

A standard time domain based LF model fitting algorithm was described in Strik et al.

(1993); Strik (1998). The algorithm is carried out as follows.

The method involves first finding an initial set of LF model-based parameters which are

then refined during an optimisation procedure. In order to avoid the negative effect of high-

frequency components on the fitting, a low-pass filtering operation is first applied. This

is done by convolving the differentiated glottal source signal with an 11-point Blackman

window, which has the characteristic of having a ripple-free impulse response (Strik, 1998).

Fitting to each differentiated glottal source pulse initially starts from a given GCI (which

can be detected, for instance, using the algorithm described in Chapter 4). The time

point te (see Figure 2.10) can be obtained by searching nearby the GCI location for the

maximum negative amplitude. This amplitude is chosen as EE. Then a search is done to

the left of te for the first zero-crossing. This point is assigned as tp. The point of glottal

opening, to, is obtained by continuing the search left until pulse descends to below a small

threshold. In this thesis the threshold used is 0.1 times the maximum positive amplitude

of the present voice source pulse. In Strik et al. (1993) the authors suggest using an FFT

based method to obtain an initial ta value. However, the author’s experience of using this

approach is that it frequently gives unsuitable ta values. Instead an initial Ra value of

0.02 is fixed, and ta is calculated from this. A similar approach is used in the SKY voice

source analysis software (Kreiman et al., 2006).
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Initial parameters are then refined using a two-step optimisation approach. During each

iteration of the optimisation methods LF model pulses are generated and an error value

is measured between the generated pulse and the present voice source pulse. However, as

the low pass filtering of the voice source signal affects the pulse shape, the same low pass

filtering is applied to each generated LF model pulse. A root-mean-squared (RMS) error

function is used in both optimisation steps. The first step involves the use of a simplex

based method (Nelder and Mead, 1965) which is believed to be insensitive to initial fitting

errors. Finally, a steepest descent algorithm is applied to further refine the LF model fit.

In both steps all model parameters, EE, to, tp, te and ta are free to vary.

Similar to the direct measures, model fitting methods will also be negatively affected

by errors in glottal inverse filtering. Furthermore, the method described above can also

produce discontinuities in parameter trajectories even in relatively stable regions in the

speech signal. This is often due to the difficult in consistently located the point of glottal

opening (Alku et al., 2002).

An alternative method for LF model fitting can be carried out using amplitude based

methods (see initial work on this in Kane and Gobl, 2009). LF model-based parameters

can be derived using the equations proposed in Gobl and Nı́ Chasaide (2003a). First, the

amplitude of the main excitation EE, the maximum amplitude of the glottal pulse (UP )

and of the glottal derivative pulse (EI) need to be measured for each glottal cycle. The

amplitude based estimation of Rg can then be calculated:

Rga =

(
1

π

)
·
(
EI

UP

)
/f0 (2.22)

and Rk can be estimated with:

Rka =

(
2

π

)
·
(
EI

EE

)
(2.23)

There then remains just a single shape parameter, Ra, required to characterise the LF

pulse. An initial Ra value can be estimated from Rd (derived from amplitude values using

Eq. 2.17). This Ra estimate can then be optimised in the frequency domain by minimising

the following error criterion:

e =
1

N

N∑
f=0

P (f)

P̂ (f)
− lnP (f)

P̂ (f)
− 1 (2.24)

which is the discrete Itakura-Saito distance measure between the power spectrum of the

windowed differentiated glottal source frame P (f) and the synthetic differentiated glottal
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source frame P̂ (f), where f is frequency in Hertz and N is the maximum frequency

considered. In this thesis N is fixed at 3 kHz. Note that the synthetic differenitated

glottal source frame is generated using the already measured LF model-based parameters

and the present estimated Ra value. This procedure for LF model fitting will be called

Amp-LF in this thesis.

Glottal model estimation by phase minimisation

A recently developed algorithm allows derivation of the Rd parameter without prior inverse

filtering and without explicit model fitting. The method is described in Degottex et al.

(2011b). It involves estimation of the Rd parameter of the LF model by minimising

a phase-based criterion and has the advantage of being calculated independently of the

precise position of the glottal pulse and of the strength of the main excitation, EE. A

brief summary of the algorithm is given.

The algorithm considers the so-called mean squared phase difference (MSPD). One can

utilise the outcome of minimising:

MSPD2(θ,N) =
1

N

N∑
k=1

(
∆−1∆2 6 Rθ

k

)
(2.25)

where N = |flim/f0|, k is the harmonic index and θ is the shape parameter of the glottal

model (i.e. Rd). The computation of this objective function involves applying the second

order phase difference (∆2) and the anti-difference operator (∆−1) to the convolutive resid-

ual, Rθ
k. R

θ
k is the deconvolution of the given speech spectrum, Sk, by the speech model.

The speech model is the combination of the glottal pulse shape, Gθ
k, with the minimum

phase vocal tract model, ε (Sk/G
θ
k · jk) (where ε (.) is the minimum phase version of a

given spectrum).

MSPD2(θ,N) is minimised with respect to θ (i.e. Rd) using the algorithm described

in Brent (1973) which has the advantage of not requiring initial parameter estimates.

A more recent study (Huber et al., 2012) has proposed variants of this phase minimi-

sation criterion as well as further development of the regression analysis used with the Rd

parameter, originally described in Fant et al. (1994, 1995).

One striking advantage of this method is that it avoids glottal inverse filtering. How-

ever, as the method depends on phase characteristics of the signal it is likely that the

effects of phase distortion, which could result from the recording equipment, would reduce

the robustness of the analysis. Such effects of phase distortion were recently discussed in

O’ Cinnéide (2012)
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2.3.4 Simultaneous source-filter parameterisation

The parameters of the ARX-LF model, which applies an Auto-Regressive vocal tract model

excited by the combination of an eXogenous signal with an LF model pulse (Vincent et al.,

2007), are often solved simultaneously for a given pitch-synchronous speech frame.

A time-domain approach to solving the parameters of the ARX-LF model was described

in Hui-Ling (2002) and del Pozo (2008). The algorithm initially uses the parameters of the

KLGLOTT88 model and derives these parameters along with an all-pole vocal tract model

parameters by applying a convex optimisation method to minimise a time domain squared

error of the residual signal. Dynamic programming is used to determine the optimal path

of the vocal tract and KLGLOTT88 parameters and finally an inverse filtering operation

is carried out using the derived vocal tract model and the glottal source estimate is re-

parameterised this time using the LF model.

2.3.5 Manually optimised glottal source analysis

Another approach to inverse filtering and glottal source parameterisation is to combine

automatic methods with manual optimisation. A comprehensive procedure for carrying

out this process was outlined in Gobl and Nı́ Chasaide (2010, 1999a). For the inverse fil-

tering part, this procedure first involves applying automatic closed-phase inverse filtering.

The inverse filtering is then optimised manually by allowing the user to adjust formant

frequencies and bandwidths to achieve maximum formant cancellation. The user is guided

through the use of time and frequency domain displays and seeks to cancel resonance in

resulting spectrum and also reduce any time-domain ringing, particularly in the closed

phase.

Similarly, for the parameterisation part, model matching (using the LF-model) is done

automatically. Again the user optimises the fit (by modifying time and amplitude model

parameters) using time and frequency domain displays. In order to optimise the fit the

user typically attempts to ensure close fitting to the region around the main excitation.

The user also pays particular attention to the consistent marking of the point of glottal

opening. Often the estimated glottal derivative pulse does not quite cross the zero-line

as can be seen in Figure 2.12. Using the actual zero-crossing (indicated by the negative

red stem) would clearly result in over estimation of the glottal open phase and, hence, the

manual user may at times have to visually extrapolate from the curve of the open phase

lobe in order to more accurately and consistently mark the point of glottal opening.

The obvious drawback of this approach is that it is extremely time-consuming, as each

individual glottal pulse needs to be analysed. Another drawback is that the user needs to
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Figure 2.12: Differentiated glottal pulse illustrating the potential for inconsistency in
marking of the point of glottal opening. The positive green stem shows the marking of
glottal opening by a user of the manually-optimised approach, with the negative red stem
showing its estimation by an automatic algorithm

be experienced in this type of analysis and that there is a danger of subjectivity. Despite

this, one can obtain very precise glottal source measurements using this approach which

may otherwise not be obtainable using purely automatic approaches.

2.4 Summary

This chapter provided an overview of the production and acoustics of speech, with par-

ticular attention paid to the laryngeal activity relevant for producing different phonation

types. The chapter also discussed different approaches to doing acoustic modelling of

speech based on Fant’s source-filter theory. A survey of the different approaches to esti-

mating the glottal source by glottal inverse filtering was given, with a subsequent review

of the different approaches used to characterise the glottal source signal.



Chapter 3

The glottal source in spoken

communication and speech

technology

3.1 The role of the glottal source in speech commu-

nication

As humans we exploit the different modalities that are available to us in order to commu-

nicate with each other. Changes in the articulation of the vocal tract are predominantly

used for achieving phonetic contrast. However, even from a very young age infants are

sensitive to variation in a parent’s voice quality long before they have any real grasp of

the linguistic content of the utterances (Marwick et al., 1984; Mackenzie Beck, 2005). As

phonation type is a main component for much of the variation in voice quality, we develop

a strong command of our vocal folds. We use our voice to carry the linguistic content of

our spoken utterances and colour them with aspects of our communicative intention, our

affective states, etc.

The following section provides a broad illustration of how variation in the voice is

exploited by speakers. Note that this section does not seek to provide a comprehensive

survey of the area but rather serves as an illustration of the importance of the voice in

different aspects of spoken communication.

38
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3.1.1 Voice quality

Gross changes in phonation type can bring about clearly perceivable differences in voice

quality and these changes are utilised by speakers for both linguistic and so-called par-

alinguistic functions in speech.

Linguistic function of voice quality

Some languages use short-term changes in voice quality for pronouncing certain linguistic

units (Laver and Trudgill, 1979). Below are some examples of how phonemes are differ-

entiated using voice quality variation in certain languages. The set of examples is not

intended to be anywhere near exhaustive but simply serves to provide an illustration of

how voice quality can also be used to affect the propositional content in some languages.

In Gujarati, speakers use modal and breathy voice to contrast some vowels e.g., the

words /baR/ (‘twelve’) and /ba
¨
R/ (‘outside’), are contrasted solely on the presence or

absence of breathiness in the vowel (Ladefoged and Maddieson, 1996, p. 315). In the

Central American language Jalapa Mazatec both breathy and creaky voice are used in the

production of certain vowels (Silverman et al., 1995). For instance, /jæ
¨

/ (‘a boil’) and

/gi
¨
/ (‘he went’) involve the use of breathiness in the vowel. Creaky voice is also used, for

example, in /si
˜
/ (‘holiday’) and /tSu

˜
/ (blouse’). Also, it is common in some American

Indian languages to use creaky voice for contrast between some vowels and nasals (Gordon

and Ladefoged, 2001). Harsh voice has also been noted in the phonetic system of !Xóõ

(Traill, 1986).

Historically, the Khmer (Cambodian) language exploited the difference between breathy

and clear or modal voice for phonetic contrast. One dialect of Khmer spoken in Chan-

thaburi Province in the east of Thailand maintains the use of these phonation types to

differentiate some vowels (Wayland and Jongman, 2003). For instance, the minimal pairs

/ti
¨
En/ (‘candle’) and /tiEn/ (‘to blame’) as well as /ka

¨
t/ (‘he’) and /kat/ (‘to cut’) are

differentiated based just on whether there is breathiness in the vowel.

In terms of voice quality use in tonal languages a ‘growling’ harsh tone has been

reported in Zhenhai (Rose, 1989). The higher pitch ventricular voice (Laver, 1980) has

also been observed in the tones of Bai (Esling and Harris, 2003).

Paralinguistic function of voice quality

The term paralinguistic is often used in the literature to refer to the communication of

affect and other intentions that are beyond the normal scope of linguistics (Gobl, 2003).

However, there is no obvious boundary separating the linguistic from the paralinguistic
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and in fact the two are inextricably coupled when considering interactive, conversational

speech. Nevertheless, as the term is used widely in the literature a separate discussion is

given here on the paralinguistic function of voice quality. Paralinguistics is used broadly

here to refer to the intentions, attitudes, emotions and affective states expressed by speak-

ers (Ishi et al., 2008a).

Speakers in natural conversational settings regularly deviate from their habitual voice

quality to signal attitude, mood and emotion (Gobl and Nı́ Chasaide, 2003b). It has been

suggested that some of these aspects share universal characteristics (Brown and Levinson,

1987), though it is likely than many aspects are specific to language and culture (Ogarkova

et al., 2009; Yanushevskaya et al., 2011).

Breathy voice has been generally observed in association with intimacy and familiarity

(Laver, 1980). It has also been studied in relation to politeness in Japanese (Ito, 2004).

Typically, sustained high pitch can be used when conveying politeness (Brown and Levin-

son, 1987), although this is more likely to be associated with femininity than politeness

in Japanese. It is, hence, suggested by Ito (2004) that Japanese speakers, particularly

males, use other vocal strategies (i.e. breathiness) in order to communicate politeness.

Kasuya et al. (2000) and Fujimoto and Maekawa (2003) also reported that breathiness

was involved in Japanese expression of disappointment.

Creaky voice is often reported to be used for signalling boredom or resignation (Crut-

tenden, 1986). It is also frequently used for signalling a range of paralinguistic information

in Japanese (Sadanobu, 2003) and in Finnish (Silen et al., 2009). The use of creaky voice

has been studied in relation to turn-taking (Ogden, 2001) and hesitations (Carlson et al.,

2006) in interactive speech, as well in the context of various forms of expression and

emotion (Gobl and Nı́ Chasaide, 2003b; Ishi et al., 2008a; Yanushevskaya et al., 2011).

Falsetto is a phonation type typically associated with high pitch and is exploited as an

expressive tool in spoken conversation, sometimes associated with fear (Schroeder, 2001)

as well for emphasising femininity (Podesva, 2007).

The use of whisper and whispery voice is frequently used to convey secrecy or confi-

dentiality in English and many other languages (Laver, 1980; Fan and Hansen, 2013).

Some more general studies on the perception of voice quality report a mapping between

lax-creaky voice and the affects: boredom, sadness and relaxedness (Gobl and Nı́ Chasaide,

2003b; Yanushevskaya et al., 2005).

Although the above discussion provided some specific examples of direct relationships

between voice quality and the signalling of paralinguistic information, in everyday spoken

conversation these relationships are more complex. Furthermore, many of the observations

in the studies referred to above involved qualitative inspection of at times small volumes of
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speech data. However, in order to quantitatively study the use of voice quality in natural

settings, effective and robust analysis tools are required.

3.1.2 Glottal source dynamics in intonation and prosody

Although instances of non-modal voice quality involve sharp changes in phonation type,

the glottal source is, in fact, continually varying in voiced speech (Gobl, 1988; Nı́ Chasaide

et al., 2011). Recent studies (Yanushevskaya et al., 2010; Nı́ Chasaide et al., 2011) have

investigated the variation of parameters describing the glottal source and have found some

of these parameters to be important for the signalling of prominence or focus in spoken

utterances. In fact in some instances certain glottal source parameters displayed peaks

or dips more tightly aligned to the focused syllable than f0. One specific finding was

that the open quotient (OQ) parameter, in many instances produced a clear dip in the

region of the focused syllable, suggesting a tenser phonation type. Vainio et al. (2010)

also investigated the effect of expressions of focus on glottal source parameters and found

that the Finnish speakers they analysed displayed normalised amplitude quotient (NAQ,

Alku et al., 2002) values that suggested a laxer phonation type. Of course these studies

do not necessarily contradict one another, as speakers of different languages may adopt

varying vocal strategies for achieving prominence. These studies do, however, emphasise

the importance of the glottal source for such communicative goals.

3.2 Applications and the impact on speech technol-

ogy

In previous times when speech synthesis was mainly achieved through the use of formant

or articulatory synthesis, the glottal source component played a critical role. This resulted

in a large amount of research attention being paid to the estimation and modelling of the

glottal source and its inclusion in speech synthesis (see e.g., Klatt, 1980; Holmes, 1983;

Carlson et al., 1989; Mahshie and Gobl, 1999). However, with the advent of non-parametric

concatenative speech synthesis and Hidden Markov Model (HMM) based statistical speech

synthesis (which typically uses either an impulse train or white noise as the excitation

source) the importance of glottal source analysis faded somewhat. Recently, however,

there has been a resurgence in the exploitation of the glottal source in speech technology

through the use of emerging and state-of-the-art developments and approaches.

This section provides an illustration of some recent speech technology developments
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which incorporate glottal source and voice quality analysis.

3.2.1 Speech synthesis and voice modification

The attraction of having flexibility of voice characteristics of speech technology applica-

tions has existed for some time. Recently there have been some notable developments in

this area.

The work described in Cabral et al. (2008, 2011b) demonstrated how a glottal source

model (Fant et al., 1985a) could be incorporated into a modern HMM-based synthesis

platform. The method involves estimation of the glottal source signal using a conventional

inverse filtering method and subsequent glottal source parameterisation. The glottal model

signal is then removed from the speech signal in the frequency domain through the use

of glottal spectral separation (GSS, Cabral et al., 2008). The resulting spectral envelope

is then parameterised using the STRAIGHT algorithm (Kawahara, 1997) which ensures

high quality synthesis. At synthesis time the parameters of the glottal model can be varied

in order to approximate an alternative voice quality.

Another state-of-the-art statistical parametric synthesis system was recently proposed

(Raitio et al., 2008, 2011) which also exploits glottal inverse filtering. For this method,

however, the glottal source estimate is not parameterised with a glottal source model but

instead modification and concatenation of natural glottal source pulses is used to create an

excitation signal at synthesis time. This excitation source can also be modified to change

voice characteristics and has been shown to produce highly natural speech compared to

previous state-of-the-art methods.

Glottal source modelling has also been utilised in recent voice modification methods.

In the approach called Separation of the Vocal-tract with the Liljencrants-Fant model plus

Noise (SVLN, Degottex et al., 2011a, 2012), the Rd parameter of the LF model is derived

using the phase minimisation approach (see Chapter 2, Section 2.3.3 and Degottex et al.,

2011b). The approach also includes parameterisation of the noise level, as well as it’s

temporal modulation, and a minimum-phase spectral envelope as the vocal tract filter.

This has been shown to be particularly useful, compared to the state-of-the-art, for large

pitch transposition and also facilitates alteration of the level of breathiness in the output.

The SVLN method has also been utilised for improving the quality of statistical speech

synthesis (Degottex et al., 2012).

A host of other voice modification methods involve glottal source modelling, often as

part of the ARX-LF modelling of speech (see e.g., Vincent et al., 2005; Agiomyrgiannakis

and Rosec, 2009; O’ Cinnéide et al., 2011).
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3.2.2 Separating speaking styles

Glottal source and voice quality parameters have also been shown to be useful for the

purpose of separating speaking styles in corpora of expressive speech (Székely et al., 2011,

2012b). This sort of speech processing can help facilitate the development of speech

synthesisers with different speaking styles for the one voice (Székely et al., 2012a). A

study of political speeches found that voice quality parameters for discriminating breathy

to tense voice correlated well with human annotations of speaking styles, compared to

more conventional audio and video features (Scherer et al., 2012b). Furthermore, a recent

study involving classification of different levels of vocal effort from expressive speech found

that the inclusion of voice quality features (including the Rd estimation using the method

in Degottex et al., 2011b) brought a significant improvement to the classification when

combined with mel-cepstral coefficients (MFCCs) than when using MFCCs alone (Obin,

2012).

3.2.3 Emotion classification

The voice is intuitively a means by which people can express their affective states and not

surprisingly measurements to do with the glottal source and voice quality have been found

to be useful for the classification of emotions. Some notable work by Lugger and Yang

(2007) investigated the contribution of the voice quality parameters described in Lugger

et al. (2006) for classification of six emotions: anger, happiness, sadness, boredom, anxiety

and neutral. The voice quality parameters used were the so-called glottal gradients (Lug-

ger et al., 2006) which were developments of previous measurements described in Stevens

and Hanson (1994). The study found that the voice quality parameters contributed addi-

tional information to the classification when combined with more commonly use prosodic

parameters. A further study found improved classification of acted emotions when using

glottal source parameters, including NAQ and OQ (Sun et al., 2009).

Several other studies have noted improvements in emotion classification by the inclusion

of features describing the glottal source (Lliev et al., 2010; Tahon et al., 2012; Sun and

Moore, 2012). More specifically, some studies have focused on the detection of depression

and have emphasised the importance of glottal source features (Moore et al., 2003; Ozdas

et al., 2004; Moore et al., 2008).
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3.2.4 Other areas of speech technology

Aside from the main areas which have utilised glottal source parameters discussed above,

other areas of speech technology have also benefitted from the inclusion of these parame-

ters. For instance, a recent study (Zelinka et al., 2012) considered the effects of different

levels of vocal effort (e.g., whisper, normal voice, shouting) on the performance of speech

recognition of isolated words. The study presented a 50 % relative reduction in word error

rate by normalising for vocal effort. Also, Zhang and Hansen (2007) investigated the effect

of varying vocal effort from whisper to shouted on speaker identification and found that

whisper caused the most significant deterioration in performance.

In Drugman and Dutoit (2010) the authors demonstrate how glottal signatures, derived

from the Linear Prediction (LP) residual signal could be used for speaker recognition.

Other work on speaker recognition observed improvements by including glottal model

parameters and closed-phase information as input features to the classifier (Slyh et al.,

2004). Furthermore, very recent research has demonstrated that more commonly used

features of the glottal source have been shown to provide complementary information to

standard spectral features for discriminating speakers (Félix Torres and Moore, 2012).

3.3 Summary

This chapter provided an illustration of the use of the glottal source in spoken communica-

tion. In particular changes in the phonation type, and consequently the glottal source, can

be made to bring about changes in voice quality. This can be used for phonetic contrast

in certain languages, as well as for various communicative and paralinguistic functions in

interactive speech. The impact of glottal source characterisation on speech technology was

also discussed, and it is clear that many areas of speech technology have recently benefit-

ted from the inclusion of acoustic features to do with the glottal source and vocal tract

filter separately. Nevertheless, there is a critical requirement for the improvement in the

robustness of glottal source and voice quality measurements to increase the effectiveness

of such features in speech technology.

3.4 Aims

The discussions in the present and previous chapter (i.e. Part 1 of the thesis) have provided

the motivation for the set of aims of this thesis, which are now listed:
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• To assess the effects of different phonation types on glottal closure instant detection

and develop a new method to properly deal with these effects.

• To improve the robustness of automatic glottal source modelling.

• To develop novel methods for discriminating and detecting different commonly oc-

curring voice qualities.

• To evaluate the newly developed algorithms against the state-of-the-art methods.

• To illustrate how these new algorithms may be exploited in functional applications.

• To construct a package of software containing code of the developed methods to

encourage testing, usage and feedback.



Part II

Fine-grained analysis methods
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Chapter 4

Glottal closure instant detection in a

range of voice qualities

Summary

Recently developed speech technology platforms, such as statistical speech synthesis and

voice transformation systems, facilitate the modification of voice characteristics. To fully

exploit the potential of such platforms, speech analysis algorithms need to be able to

handle the different acoustic characteristics of a variety of voice qualities. Glottal closure

instant (GCI) detection is typically required in the analysis stages, and thus the impor-

tance of robust GCI algorithms is evident. The current study examines some important

analysis signals relevant to GCI detection, for a range of phonation types. Furthermore, a

new algorithm (called SE-VQ) is proposed which builds on an existing GCI algorithm to

optimise the performance when analysing speech involving different phonation types. Re-

sults suggest improvements in the GCI detection rate for creaky voice due to a reduction in

false positives. When there is a lack of prominent peaks in the Linear Prediction residual,

as found for breathy and harsh voice, the results further indicate some enhancement of

GCI identification accuracy for the proposed method.
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4.1 Introduction

A required starting point for many speech and voice quality analysis methods is to obtain

glottal closure instant (GCI) locations (Naylor et al., 2007). GCIs refer to the moments

of most significant excitation that occur at the level of the vocal folds during each glottal

period (Smits and Yegnanarayana, 1995). Knowledge of these locations can be used for

applications like prosodic modification (Rao and Yegnanarayana, 2006), join optimisation

in concatenative synthesis (Stylianou, 1999) and glottal inverse filtering (Drugman et al.,

2009a). Due to the wide range of uses, GCI detection has received a considerable amount

of research attention, with many studies focusing on the robustness of algorithms in de-

graded conditions (e.g., in the presence of noise, Drugman and Dutoit, 2009, distance from

microphone, Guruprasad et al., 2007.)

During the last few years a range of speech technology platforms have been developed

which facilitate the modification of voice characteristics. These platforms have come in the

form of speech synthesis (Cabral et al., 2011b; Raitio et al., 2011) and speech modification

systems (Agiomyrgiannakis and Rosec, 2009; O’ Cinnéide et al., 2011). For instance,

the speech synthesis system developed by Cabral et al. (2011b) uses a glottal source

model (Fant et al., 1985a) as the excitation signal which can be modified by the user to

approximate an alternative voice quality. The same glottal source model is used in the

speech modelling methods described by Vincent et al. (2005) and O’ Cinnéide et al. (2011).

In both methods the shape of the glottal source pulses can be adapted in order to create

a speech output with a laxer quality.

However, in order to fully exploit the potential of these platforms it is necessary to

deploy speech analysis algorithms, which can cope with the wide range of voice quality

variation often found in conversational speech. The importance of voice quality changes

in speech communication was discussed in Chapter 3. Note that in this chapter the termi-

nology in relation to voice quality and phonation types is consistent with that described

in Chapter 2, Section 2.1.2.

Non-modal phonation types display varying glottal source characteristics, and this

would likely impact on the performance of GCI algorithms. For example, creaky voice

displays very different glottal characteristics than modal voice, with considerably longer

pulses and at times irregular temporal patterning. If a GCI method could handle this

difference then it may be possible to sufficiently model ‘creakiness’ in order to incorporate

it in the speech output. Such a modification may be desirable for producing more ‘conver-

sational’ or expressive synthetic speech. In fact, the present author has been engaged in

work on the development of a vocoder which can give a natural rendering of creaky voice
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for statistical parametric speech synthesis (Drugman et al., 2012b). However, for this a

GCI algorithm which can handle creaky phonation is critical.

A recent study (Cabral et al., 2011a) demonstrated the effect that variation in phona-

tion type had on GCI detection performance. Specifically, lax and breathy voices were

shown to generally reduce the accuracy of many algorithms in terms of distance from es-

timated GCIs to the reference. Apart from this study and a paper which focused on the

‘smoother glottal closure’ found in breathy voice and voice offsets (Tuan and d’Alessandro,

199), research in this area has tended not to focus on development and evaluation of al-

gorithms for non-modal phonation.

Hence, the current chapter presents, for a range of phonation types, an investigation

of the characteristics associated with the closing of the glottis, in terms of different anal-

ysis signals typically used in GCI detection (Section 4.2). Furthermore, several widely

used state-of-the-art GCI detection algorithms and the strategies employed in them are

described (Section 4.3), as well as a newly developed algorithm which builds on a previ-

ously described method (Drugman et al., 2012c) modified in order to deal with some of

the difficulties posed by non-modal phonation (Section 4.4). These algorithms are first

evaluated on standard speech databases and also on speech produced by six speakers in

a range of phonation types (Section 4.5). This work has recently been published in Kane

and Gobl (2013)

4.2 Glottal closing characteristics of different phona-

tion types

In this section the characteristics of a range of phonation types covered in the current

study are described in terms of analysis signals typically used when considering GCI

detection. In the descriptions observations are made based on the present data combined

with previous evidence from the literature. As is done in Laver (1980) the phonation types

are described in relation to modal voice, which is used as a reference. 1

1For mainly pragmatic reasons, there is a slight deviation from Lavers terminology with regard to tense
voice: Tense voice is here referred to as a phonation type, distinct from harsh voice. Note however, tense
voice is generally thought of as involving elevated tension settings throughout the entire vocal system
(Laver, 1980). At the laryngeal level, the increased tension may sometimes result in a phonation type
which can be adequately described as harsh voice. However, compared to harsh voice, the increase in
laryngeal tension in tense voice is typically less extreme, and may not give rise to the characteristic
irregularities in vocal fold vibration associated with harsh voice (Laver, 1980). Hence, tense voice is here
used to refer to a phonation type involving an increase in the tension settings compared to modal voice,
but which does not display the irregular vocal fold vibration associated with harsh voice.
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Two of the main analysis signals used when describing GCI detection are the first

derivative of the electroglottographic signal (DEGG) and the linear prediction residual

(LP-residual). The DEGG is the derivative of the EGG signal which is obtained through

the use of a laryngograph. The device involves sending an electrical current between

electrodes placed on either side of the larynx. The EGG signal is a measure of conductance

which oscillates at the frequency of f0 during voiced speech and which peaks when the

glottis is closed. The DEGG signal is typically used for obtaining reference GCI values.

The negative-going zero-crossings, following the peaks are typically used for obtaining the

reference GCI.

The LP-residual is a commonly used analysis signal for localising glottal closure instants

(Ananthapadmanabha and Yegnanarayana, 1979; Naylor et al., 2007; Drugman et al.,

2012c). The signal is derived here by inverse filtering the (un-pre emphasised) speech signal

using the coefficients obtained by autocorrelation linear prediction. In this work the order

of the LPC analysis is determined by the sampling frequency, fs, according to fs/1000+2

(as was used in Drugman et al., 2012c) 2. This order corresponds roughly to two coefficients

to characterise each formant, for a typical male speaker, and two further coefficients to

characterise the voice source contribution. The setting of this order, however, does not

critically affect the GCI detection performance.

In the left column of Figure 4.1 the speech waveform, DEGG and LP-residual are dis-

played for a portion of a modal utterance produced by a female speaker. It can be seen

in the bottom left panel that there are clear peaks in the LP-residual, some of which are

aligned to the negative zero-crossings of the DEGG signal (middle panel). In compari-

son, the LP-residual for a breathy utterance (right column) is considerably noisier with

less prominent peaks, despite the DEGG showing the phonation to be strongly periodic.

Smoother closing characteristics have been previously reported (Tuan and d’Alessandro,

199) and perhaps arise from weaker laryngeal tension, compared with modal voice. This

may partly account for the lack of impulsive peaks in the LP-residual.

Focusing on tense voice (left column of Figure 4.2) one can observe peaks in the LP-

residual which are even more prominent than those in modal voice. Tense voice is often

reported to display strong higher harmonics, compared to modal voice (Gobl and Nı́

Chasaide, 1992), which contributes to a more prominent peak in the LP-residual, corre-

sponding to GCIs, because more harmonic components exceed the noise level in the higher

2This LPC order is chosen to obtain a spectral envelope which avoids fitting to the harmonics. Although
it is widely known that LPC analysis becomes biased towards harmonics for high f0 values (Villavicencio
et al., 2006; Kay, 1988), there is no reported evidence, so far, of other spectral envelope estimation
algorithms bringing improved GCI detection for higher pitched voices.
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Figure 4.1: Speech waveform (top row), derivative EGG signal (middle row) and LP-
residual (bottom row) for modal (left column) and breathy (right column) utterances.
Speech segment is a portion of the utterance This was easy for us produced by a female
speaker.

frequencies.

For harsh voice (right column of Figure 4.2), on the other hand, the peaks in the LP-

residual are considerably less prominent, compared to both the modal and tense examples.

Harsh voice is known to display irregularities in terms of amplitude and frequency of

successive glottal pulses (Ishi et al., 2008a). The weaker periodicity compared to modal and

tense voice combined with a noisier LP-residual (possibly contributed to by the increased

presence of turbulent air produced in harsh voice, Esling and Harris, 2003) could explain

the lack of prominent residual peaks observed in Figure 4.2.

Creaky voice is characterised auditorily by a sensation of repeating individual impulses

(Ishi et al., 2008b) and has been studied in connection to turn-taking (Ogden, 2001) and

hesitations (Carlson et al., 2006) in spoken conversation. To the best of the authors

knowledge, GCI detection has not been quantitatively evaluated on creaky speech seg-

ments, although some qualitative observations were included in Degottex et al. (2009).

Creaky voice produces dramatically different characteristics compared to those of modal

voice (see Figure 4.3).
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Figure 4.2: Speech waveform (top row), derivative EGG signal (middle row) and LP-
residual (bottom row) for tense (left column) and harsh (right column) utterances. Speech
segment is a portion of the utterance Where were you while we were away? produced by
a male speaker.

The characteristically long pulses can be observed in Figure 4.3 as well as the presence

of secondary excitations which are apparent in the DEGG signal (middle panel). Secondary

peaks can also be observed in the LP-residual (bottom panel), but these peaks do not

appear to correspond to the DEGG secondary peaks. Instead they are likely due to the

discontinuity at glottal opening, as they are aligned to the small negative peaks in the

DEGG signal. This discontinuity can be particularly abrupt in creaky voice and causes

the positive peaks in the LP-residual.

Falsetto is a phonation type typically associated with high pitch and is exploited as an

expressive tool in spoken conversation, frequently associated with fear (Schroeder, 2001)

and femininity (Podesva, 2007). Aside from the short glottal pulses typically observed in

falsetto (van den Berg, 1968), it is also reported to display a steeper spectral slope (Monsen

and Engebretson, 1977). A segment of a modal utterance compared to a falsetto one by

the same female speaker is shown in Figure 4.4. The difference in fundamental frequency

is clearly apparent when observing the number of pulses in the two speech segments (both

segments are 20 ms). The modal utterance has a median f0 of just under 200 Hz, while



4. Glottal closure instants 53

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
−1

0

1

Speech waveform (creaky)

A
m

pl
itu

de

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
−0.5

0

0.5

1

A
m

pl
itu

de
DEGG (creaky)

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
−0.5

0

0.5

1

Time (seconds)

A
m

pl
itu

de

LP−residual (creaky)

Figure 4.3: Speech waveform (top panel), derivative EGG signal (middle panel) and LP-
residual (bottom panel) of a portion of the utterance She is thinner than I am produced
by a male speaker in creaky voice.

the falsetto utterance has a median f0 of over 400 Hz. Again for the modal utterance

clear peaks occur in the LP-residual which correspond to the negative zero-crossing in

the DEGG signal. For falsetto, the LP-residual is considerably noisier. For higher f0

levels LPC analysis can become biased towards the harmonics and the subsequent inverse

filtering may remove excitation components of the signal. This can contribute to a LP-

residual with less prominent peaks.

From the above description it is clear that certain phonation types can display highly

different characteristics from those of modal voice. As a result the strategies employed in

GCI detection algorithms may not be suited to the analysis of non-modal phonation.

4.3 GCI algorithms

The automatic detection of GCIs has received a considerable amount of attention and

many innovative approaches using a wide range of signal processing techniques have been

proposed. For instance, some approaches rely on the Hilbert Envelope derived from the

LP-residual in order to remove the finer structure in the signal and make peaks corre-

sponding to GCIs possible to detect (Ananthapadmanabha and Yegnanarayana, 1979;
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Figure 4.4: Speech waveform (top row), derivative EGG signal (middle row) and LP-
residual (bottom row) for modal (left column) and falsetto (right column) utterances.
Speech segment is a portion of the utterance Where were you while we were away? pro-
duced by a female speaker.

Cheng and O’Shaughnessy, 1989; Rao et al., 2007). Some researchers have utilised the

wavelet transform, which is known to be suitable for finding singularities in signals, in

order to detect GCIs (see, for example, Kadambe and Bourdreaux-Batels, 1992; Tuan and

d’Alessandro, 199; Sturmel et al., 2009; d’Alessandro and Sturmel, 2011). The approach

proposed in Schnell (2007) is to use a weighted, non-linear prediction method in order to

derive a signal from which maxima, corresponding to GCIs, can be measured. Methods

are also outlined in Moulines and Di Francesco (1990) for detecting GCIs based on sudden

changes in spectral characteristics within a glottal period.

A review is presented in this section of a range of GCI detection algorithms which are

evaluated in the current study. State-of-the-art algorithms were selected that both repre-

sent a wide range of approaches and whose code was available as original implementations.

The code was either available online or was provided by the authors. All algorithms were

used with the standard default settings and no voicing decision was carried out internally

by any of the algorithms. Instead the Summation of Residual Harmonics (SRH) method

(Drugman et al., 2011) was used to detect unvoiced regions. The SRH method extracts an
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f0 contour following a summation calculation carried out on the harmonics of the resid-

ual signal. The voicing decision is made by applying a threshold to the SRH value, and

has been shown to be robust. All GCIs detected by the various algorithms found in the

unvoiced regions were removed.

4.3.1 DYPSA

The Dynamic Programming Projected Phase-Slope Algorithm was originally presented in

Kounoudes et al. (2002), with a more thorough description available in Naylor et al. (2007).

It is a frequently used comparison algorithm and the original implementation is available

in the VOICEBOX Matlab toolbox. The algorithm uses the phase-slope function, where

positive-going zero-crossings are selected as GCIs. The phase slope function is calculated

from the phase-slope, τ(ω), which is derived from the group-delay function −φ(ω) of the

LP-residual signal (calculated from pre-emphasised speech). Zero-crossings are used as

GCI candidates, and a further operation of phase slope projection is used in order to

retrieve missed GCIs, which are then inserted at likely time locations.

As the window size used can greatly influence the zero-crossings found an N-best

dynamic programming algorithm (Schwarz and Chow, 1990) is used to select the most

suitable sequence of GCI estimates, given a specified cost function. The cost function con-

sists of five elements which consider: inter-pulse similarity, pitch deviation, costs derived

from the projected phase-slope, normalised energy values and deviations from an ideal

phase-slope function. Each of these elements are weighted with constant values which are

justified in Naylor et al. (2007). The N-best dynamic programming algorithm is used to

find an optimal subset of the total set of GCI candidates which produce the cheapest path

and thus removing false alarms.

4.3.2 ESPS

A method for detecting GCIs was described in Talkin (1989) which uses similar approaches

to those used for extracting f0 contours in the widely used get f0 algorithm (Talkin, 1995).

First, information from get f0 is used to highlight unvoiced areas which are not to be

analysed. The method uses dynamic programming to select the best GCI candidates which

are measured as maxima in the short-term energy normalised LP-residual. Target costs

consider peak amplitudes in the LP-residual and transition costs are based on periodicity

and inter-pulse similarity.

Although not widely used in many recent GCI evaluation studies, this method was

found to have comparable performance to state-of-the-art methods in a recent study by
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Cabral et al. (2011a) and is, hence, included in the evaluation here. The algorithm is

available in the ESPS/wave+ software package.

4.3.3 YAGA

The Yet Another GCI Algorithm (YAGA, Thomas et al., 2012) combines several differ-

ent methods used in other GCI algorithms, including: wavelet analysis, the group delay

function and N-best dynamic programming. The method can also be used for estimating

glottal opening instants (GOIs).

GCI candidates are detected in YAGA by first estimating the voice source signal by

using Iterative Adaptive Inverse Filtering (IAIF, Alku, 1992). The multi-scale product of

the stationary wavelet transform (SWT) is used to highlight discontinuities in the voice

source signal, by taking information across the wavelet scales. These discontinuities are

detected using the group-delay function, and GCI candidates are measured as negative-

going zero-crossings.

False alarms are then removed using a similar N-best dynamic programming approach

as is used in DYPSA (Naylor et al., 2007). YAGA uses similar cost elements to those

used in DYPSA, with modification of the inter-pulse similarity cost and a further cost for

distinguishing GCIs and GOIs.

4.3.4 ZFF

A GCI detection method was presented in Murty and Yegnanarayana (2008) which is based

on the use of a Zero-Frequency Filter (ZFF). The approach is based on the observation

that, similar to an impulse excitation, the discontinuity which occurs at GCIs is reflected

across all frequencies, including 0 Hz. This information can be retrieved through the use

of a 0-Hz resonator, which has the advantage of isolating frequencies well below possible

vocal tract resonance.

The method has essentially four steps. The speech signal, s(n), is differenced in order

to remove any time varying low frequency bias, with the output being x(n):

x(n) = s(n)− s(n− 1) (4.1)

x(n) is then put through a resonator centred on 0 Hz (the filtering is done twice to ensure a

sharper roll-off outside the frequency range of interest). The following difference equation

is used:
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y(n) = −
2∑

k=1

aky(n− k) + x(n) (4.2)

where a1 = −2 and a2 = 1. The output signal, y(n), can display a trend where it drifts

away from the zero-line. To address this the mean of y(n) is subtracting from the signal

mean every 10 ms, which has the effect of forcing the signal to oscillate about the zero-line:

yrem(n) = y(n)− 1

2N + 1

N∑
m=−N

y(n+m) (4.3)

where 2N + 1 is 10 ms in samples. Finally, the time points of the positive zero-crossings

are then used to locate the GCIs as is shown in Figure 4.5.
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Figure 4.5: Speech waveform (top panel) of a segment of the sentence spoken by a male
speaker, with the trend removed and 0-Hz filtered signal and estimated GCIs (middle
panel) and the DEGG with reference GCIs (bottom panel).

4.3.5 SEDREAMS

The Speech Event Detection using the Residual Excitation and A Mean-based Signal

(SEDREAMS) method was recently introduced (initially in Drugman and Dutoit, 2009,
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and more comprehensively in Drugman et al., 2012c). The method uses a mean-based

signal, in a similar way to the ZFF method but calculated directly from the speech signal,

rather than from the output of a 0-Hz resonator. The mean-based signal, y(n), is calculated

from the speech signal s(n) using:

y(n) =
1

2N + 1

N∑
m=−N

w(m)s(n+m) (4.4)

where w(m) is a Blackman window function of length 2N + 1. This is used to determine

a region where peaks corresponding GCIs in the LP-residual can be measured. It was

shown in Drugman and Dutoit (2009) that window length affects the performance of

SEDREAMS. Too short a window causes unwanted extra oscillations which introduces

false alarms and too long a window results in misses because of oversmoothing. As a

result 1.75 · fs
f0,mean

is the chosen window size, where fs is the sampling frequency and

f0,mean is the mean fundamental frequency, which is extracted in this study using the

Summation of Residual Harmonics (SRH) method (Drugman et al., 2011).

After calculating y(n), intervals are defined as the region from each minimum to a

length 0.35 times the current pulse length. Maxima in the LP-residual are then measured

in these regions in order to localise the GCIs.

4.4 Proposed method (SE-VQ)

The new method, referred to as SE-VQ, is described in this section. SE-VQ stands for

the SEDREAMS algorithm (SE) modified to better handle voice qualities (-VQ) resulting

from different phonation types. The structure of the proposed method is illustrated in

Figure 4.6. The modifications to SEDREAMS involve applying a dynamic programming

method to select the optimal path on GCI locations based on both the strength of the LP-

residual peak and a further transition cost, which considers the transition from one GCI

location to the next. Furthermore, a final post-processing method is included to remove

the false positives that occur in creaky regions. A detailed description of the method now

follows.

To determine the regions from which the GCIs are to be detected a mean-based signal

is used, which is derived in the same manner as for SEDREAMS (see Section 4.3.5). To

extract the GCIs from these regions, the LP-residual is exploited which is computed using

autocorrelation LPC (as mentioned in Section 4.2 the order is determined by the sampling

frequency, fs, according to fs/1000+2). Unlike in SEDREAMS where a single maximum
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Figure 4.6: Block diagram of the SE-VQ method for detecting GCIs.

peak is chosen, several LP-residual peaks within each search region are retained. This is

done in order to better handle instances where there are no prominent LP-residual peaks,

e.g., in breathy or harsh voice.

For each interval i, where 1 ≤ i ≤M , of the M number of intervals detected using the

mean-based signal, the Ncand LP-residual peaks with the strongest amplitude (in the time

domain) are considered. From this a peak vector pi,j is produced, for 1 ≤ j ≤ Ncand. For

each value in pi,j a target cost di,j is attributed, which is defined as:

di,j =

(
1− pi,j

maxj{pi,j}

)
· wp (4.5)

which is weighted with a constant wp. wp is set by optimising accuracy on a database with

reference GCIs (see Section 4.5.5).

The target costs are calculated for the Ncand peaks in each of the detected intervals,

producing a structure as is shown in Figure 4.7. A transition cost, δi,j,k, is here defined as:

δi,j,k = (1− |cor{segi,j, segk}|) · ws (4.6)

where cor{.} is the Pearson correlation coefficient of two segments of speech. segi,j refers

to the segment of speech centred on the j-th candidate GCI at frame i, with segk being the

segment of speech centred around the previously chosen GCI and ws is a constant weight

(wp, ws and Ncand are jointly optimised for accuracy on a database with reference GCIs,

see Section 4.5.5). This transition cost is based on the assumption that the vocal tract is

relatively slowly varying within a reasonably short space of time (around 20 ms), meaning

that adjacent speech segments centred on a consistently chosen point (e.g., a GCI) will
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show a high degree of similarity. A sudden change in the estimated GCI location, on the

other hand, will mean that adjacent speech segments centred on estimated GCIs will show

less similarity. As a result, higher levels of dissimilarity are more heavily penalised.
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Figure 4.7: Illustration of the dynamic programming approach with Ncand peaks for inter-
vals 1 ≤ i ≤M . Transition to the second optimal peak is highlighted with an arrow.

An objective function is, hence, defined incorporating the above target and transition

costs. For a given frame i:

Di,j = di,j + min
k∈Ncand

{Di−1,k + δi,j,k}, 1 ≤ j ≤ Ncand (4.7)

which is initialised with:

Do,j = 0, 1 ≤ j ≤ Ncand (4.8)

Moving to the next frame the index of the optimal value is stored in a vector q(i) which

is used to define the optimal path of GCIs.

For many speech signals this process is typically sufficient in order to obtain suitable

GCI detection. However, for creaky voice, standard GCI methods tend to display a con-

siderable number of false positives. This is illustrated in the top panel of Figure 4.8 where

the SEDREAMS method clearly produces sensible GCI detection in the non-creaky region

(i.e. the beginning of the speech segment, up to 0.6 seconds) but produces a high number

of false positives in the creaky region (i.e. the end of the utterance).

The final post-processing step is designed to remove these false positives, while at the

same time not removing any true positive GCI estimates. To do this an analysis signal is

used which is obtained by passing the LP-residual signal through a resonator centred on
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Figure 4.8: Speech waveform from an utterance produced by a male speaker with creaky
voice starting from around 0.61 s and GCIs as estimated by SEDREAMS superimposed
(top panel), the resonator output (middle panel) and the DEGG signal with reference
GCIs (bottom panel).

f0,mean (see Figure 4.6). The resonator is characterised by two complex conjugate poles,

the difference equation of which can be written as:

y(n) = A · rLP (n− 1) +B · y(n− 1) + C · y(n− 2) (4.9)

where

A = 1−B − C (4.10)

B = 2 · e−πBwTs · cos(2πf0,meanTs) (4.11)

C = −e−2πBwTs (4.12)

where Ts is the sampling period ( 1
Fs

), Bw is the resonator bandwidth and rLP is the

Linear Prediction residual. The filtering is carried out in a forwards-backwards manner

to maintain the original phase spectrum of the input signal. The resonator bandwidth,

Bw, is set to 155 Hz in order to have a sufficiently pronounced resonating character to
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help emphasise the most prominent residual peaks. An example of the resonator output

is shown in the middle panel of Figure 4.8.

It can be observed that the resonator output displays strong negative peaks near likely

GCI locations both in creaky and non-creaky regions of the speech segment. Interestingly,

at detected GCI locations in the creaky region which are likely to be false positives strong

negative peaks do not occur. It is this specific characteristic that is exploited in the

post-processing algorithm.

The method works by iterating through the estimated GCI set and at each step it

considers whether the current GCI should be removed or not. For the current GCI the

corresponding negative peak in the resonator output is measured. The post-processing

step is designed to remove GCIs where there are no corresponding negative peaks in the

resonator output. It is illustrated with the following pseudocode:

Algorithm 4.4.1: Post-processing to remove ‘false’ GCIs in creaky regions()

if
(
rLP (i−1)+rLP (i+1)

2

)
· wpp > rLP (i)

then REMOVE GCI(i)

else RETAIN GCI(i)

where i is the index of the current estimated GCI, rLP (i) is the amplitude of the strongest

negative resonator peak in the 2 ms vicinity of the current estimated GCI and wpp is

a constant weight (see further Section 4.5.5). The method then continues to the next

estimated GCI. The remaining estimated GCIs are then considered to be the algorithms

outputted set.

4.5 Evaluation

4.5.1 Speech data

Standard database

An initial test aimed at evaluating GCI detection performance of the various algorithms on

standard read speech databases (as is done in the majority of GCI studies). For this speech

data from a Canadian male speaker (JMK) and an American female speaker (SLT) from

the ARCTIC database (Kominek and Black, 2004) was used. The JMK database contains

1114 sentences and SLT contains 1132 sentences. The sentences were designed to be

phonetically balanced and simultaneous electroglottographic (EGG) signals are available
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for both databases. Both audio and EGG signals, originally sampled at 32 kHz, were

downsampled them to 16 kHz using the SOX toolkit.

Voice quality database

The next step aimed at evaluating GCI detection on voice qualities stemming from a range

of phonation types. However, no public databases are available which contain a large

volume of speech produced in a range of voice qualities and that also have simultaneous

EGG recordings. Therefore, new recordings were made including audio and EGG signals.

This consisted of speech produced by 6 speakers (3 male and 3 female, all experienced in

speech research) recorded in a semi-anechoic chamber. This set of recordings is referred

to as read-VQ. Audio was captured using high quality recording equipment: a B & K

4191 free-field microphone and a B & K 7749 pre-amplifier. The microphone was placed

at a distance of approximately 30 cm from the speaker and participants were asked to

keep this distance as constant as possible throughout the recording session. A standard

laryngograph device was used to capture EGG signals, which was worn around the neck

of the participants with electrodes placed on either side of the larynx. The signals were

digitised at 44.1 kHz (using a LYNX-two sound card) and were subsequently downsampled

to 16 kHz using the SOX toolkit.

Participants were asked to read 17 sentences in six different phonation types (making

a total of 612 sentences) 3. The sentences were chosen from the phonetically compact

sentences in the TIMIT corpus, four of which contained all-voiced sounds. These sentences

were chosen in order to obtain a wide phonetic coverage, and as it is likely that it can be

very difficult for speakers to maintain a constant type of phonation over a long utterance,

the short, phonetically compact sentences of the TIMIT corpus were selected. One of the

male speakers produced 10 extra phonetically compact sentences, in each of the phonation

types. These were used in the weight training process described in Section 4.5.5.

The set of phonation types was: breathy, modal, tense, harsh, creaky and falsetto.

During the recordings, however, many of the participants found it very difficult to produce

creaky voice consistently across an entire utterance. Therefore the creaky utterances were

handled separately from the rest (see Section 4.5.2). Excluding creaky sentences, the voice

quality dataset totalled 510 sentences.

Participants were given prototype voice quality examples, produced by John Laver
4 and the present author, and were asked to practise producing them before coming to

3Samples from the recordings are available at: http://www.tcd.ie/slscs/postgraduate/

phd-masters-research/student-pages/johnkane.php
4These examples come as part of Laver (1980)
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the recording session. For the recordings participants were asked to produce the strong

versions of each phonation type and to maintain it throughout the utterance. During

the recording session participants were asked to repeat the sentence when it was deemed

necessary.

Although the recording process precluded the elicitation of voice quality variation as

occurring in conversational speech, this process was necessary in order to obtain a large

amount of data for each phonation type with good phonetic coverage. Nevertheless, it

is believed that the phonation types recorded will present a realistic range of acoustic

characteristics and, hence, should be suitable to test the performance of the different

algorithms.

4.5.2 Creaky utterances

As participants found it particularly difficult to produce creaky voice for entire sentences

a selection of creaky utterances was made. First participants were selected who were

deemed to produce good renditions of creaky voice. Three of the participants, 2 male

and 1 female, were included. Manual annotations were then carried out of these sentences

in order to select only the regions where creaky voice was truly produced. To do this

annotations were carried out by the present author who followed the same procedure as

is used in Ishi et al. (2008b). The decision on creaky regions was ultimately based on an

auditory judgment. The auditory criterion used was “a rough quality with the sensation

of additional impulses” (Ishi et al., 2008b), but spectrograms and pitch contours were also

used to help guide the annotation. Following this, annotations were given to a colleague,

also experienced in voice quality research. Any regions where there was disagreement or

uncertainty over the annotation were removed from the analysis. This procedure resulted

in a set of 41 sentences for which creaky regions were annotated.

Also included were creaky voice data which were not directly elicited. However, very

few speech databases are available which both contain creaky voice and have simultaneous

EGG recordings. Note also, that the collection of such data is rather difficult, but for-

tunately, an American English speaker (labelled BDL) in the ARCTIC speech databases

(Kominek and Black, 2004) happens to regularly produce creak in parts of his read sen-

tences. 100 sentences were selected from this database which were deemed to contain

creak within part of the utterance. The same annotation procedure as above was carried

out on these 100 sentences.

A summary of the speech data used in this study is shown in Table 4.1.



4. Glottal closure instants 65

Table 4.1: Summary of speech data used in this study.

Purpose Database Speakers No. of sentences

Evaluation

JMK Male 1114
SLT Female 1132

Read-VQ 3 Male, 3 Female 510
Read-VQ (creaky) 2 Male, 1 Female 41

BDL Male 100

Development Read-VQ Male 60

4.5.3 Perceptual evaluation

Despite attempting to ensure that each phonation type and resulting voice quality was

satisfactorily produced during the recording of the read-VQ set, it was not believed that

this was sufficient to be certain that the recorded speech data were as was instructed. As

a further screening of the speech data a perceptual evaluation of the data was carried out

with two participants who were experienced with using the Laver labelling scheme (note

that creaky utterances and the BDL database were not included in this procedure). This

was done using a web-based application where participants were randomly presented with

the recorded utterances and had to choose a label, from the list: breathy, modal, tense,

harsh, falsetto or other. They were also asked to state whether they believed the chosen

label was produced: for some, for most or throughout the utterance, and whether they

were: very confident, quite confident, or not confident that the label they had chosen was

suitable.

For the current study only utterances where both listeners selected the same label,

perceived the voice quality to have been sustained throughout the utterance, and were

very confident with the label they had chosen were included. The purpose of this was

to obtain more reliable labelling. Figure 4.9 shows the percentage of utterances, for each

label, which were included in the current study. This demonstrates the importance of

carrying out the perceptual screening process, particularly as less than 60 % of harsh and

tense utterances were retained for analysis.

4.5.4 Reference GCIs and evaluation metrics

In order to quantitatively evaluate GCI detection performance, reference GCIs were ex-

tracted from the derivative of the EGG signal (DEGG). The DEGG signal displays very

clear strong peaks across the range of phonation types considered here (see Figures 4.1-
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Figure 4.9: Percentage of the total recorded utterances from the read-VQ database that
was included in the analysis, for each phonation type.

4.4). Although some algorithms have been proposed for detecting these peaks (e.g., the

pitchmarks method from Edinburgh Speech Tools, or the SIGMA algorithm, Thomas and

Naylor, 2009), instead peaks were detected within a percentage threshold of the maximum

DEGG peak for a given utterance. A similar approach is used in the early stages of the

DECOM algorithm (Henrich et al., 2004) and has also been used in recent GCI studies

(Drugman et al., 2012c). For the current study peaks were detected above 10 % of the

maximum DEGG peak for a given utterance, and the location of these peaks was used

as the GCI reference. For creaky utterances, however, a slightly higher threshold of 20 %

was used, in order to avoid detecting secondary excitations (as were seen in Figure 4.3,

middle panel). Each creaky DEGG signal was checked to ensure that no ‘true’ GCIs were

excluded. However, as creaky utterances in the dataset produced rather prominent DEGG

peaks no ‘true’ GCIs were found to be excluded in the annotated creaky regions. This

separate criterion is believed to be justified as a 10 % criterion would detect some of the

secondary DEGG peaks as GCIs and not others. Furthermore, if a GCI is to be considered

‘the most significant excitation within each glottal pulse’ then selection of these secondary

peaks, for example those in Figure 4.3, would imply f0 values considerably higher than

what has been previously reported in the literature. It is hypothesised that these sec-

ondary peaks in the DEGG result from ventricular incursion which appears to be present

in Figure 4.3, though not in Figure 4.8.

DEGG signals, however, must be aligned to the speech signals to compensate for the

delay between the laryngograph device and the microphone. This alignment was done

manually for each speaker, and the delay within each speaker was assumed to be constant

(as speakers were asked to maintain a constant distance from the microphone).

For a given utterance this set of reference GCIs is then used to evaluate GCIs estimated

by a particular algorithm, using a set of metrics described in Naylor et al. (2007). For
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a given reference GCI location gref (r), the so-called larynx cycle is defined as the region

from gref (r)−(gref (r)− gref (r − 1)) ·0.5 to gref (r)+(gref (r + 1)− gref (r)) ·0.5, see Figure

4.10.

Evaluation metrics are split into two groups: one which measures event detection and

the second which assess detection accuracy.
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Figure 4.10: Illustration of GCI performance evaluation, given reference GCIs. Figure is
based on the image shown in Naylor et al. (2007).

Identification rate (IR) is calculated as the percentage of larynx cycles where exactly

one GCI is identified, i.e.

IR =
#hits

#larynx cycles
· 100 (4.13)

Miss rate (MR) is defined as the percentage of larynx cycles, in a given utterance, for

which no estimated GCI is found i.e.:

MR =
#misses

#larynx cycles
· 100 (4.14)

False alarm rate (FAR) is the percentage of larynx cycles for which more than one

estimated GCI is detected, i.e.:

FAR =
#false alarms

#larynx cycles
· 100 (4.15)

IR, MR and FAR all come under the event detection category. Note that the IR metrics

is affected by misses, false alarms and correctly identified GCIs.

Identification error, ζ, is measured when exactly one estimated GCI is detected within
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a given larynx cycle. ζ is the distance from the reference GCI to the estimated GCI.

Identification accuracy (IDA) is measured as the standard deviation of ζ. Low IDA values

imply better GCI estimation accuracy. The IDA metric was considered within the accuracy

category.

4.5.5 Weight setting for SE-VQ

For the proposed method, SE-VQ, several constants need to be set for the experimental

part of this study. These weights were determined following analysis of the set of ‘Extra’

sentences produced by a single male speaker as described in Section 4.5.1 (note these

utterances were not included in the evaluation).
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Figure 4.11: Illustration of the effect of varying the Ncand parameter (i.e. the number
of GCI candidates considered for each detected interval) on the identification accuracy
(IDA) metric. The ‘Extra’ sentences are the data used here, and for each datapoint the
IDA value obtained for each phonation type is averaged. wp and ws are here set to 0.3
and 1, respectively.

For setting the weights used in the dynamic programming (i.e. wp, ws and Ncand) part,

an exhaustive search was carried out by varying the three weights over a range of values

and recording the identification accuracy (IDA) score for each configuration. 5 wp and

ws, were both varied in the range [0, 1] in steps of 0.1. Ncand was varied in the range

[1, 10], with a value of 1 essentially being the standard SEDREAMS method (excluding

the post-processing procedure). The minimum IDA score was recorded for the values 0.3,

1 and 5 being set for wp, ws and Ncand respectively. The effect of varying Ncand, while

5Note that a similar weight setting approach is used in DYPSA, YAGA and ESPS.
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using the optimal settings for wp, ws, on the metric IDA is shown in Figure 4.11. The

improvement clearly starts to plateau at a value of 3, with 5 being the optimal setting.

A further weight, wpp, also needs to be set. wpp is the parameter of the post-processing

method described in Section 4.4 which is used to remove false positives in creaky regions.

wpp is not jointly optimised with wp, ws and Ncand. Using the three constants already set,

another exhaustive search is carried out on the ‘Extra’ speech data. Note that these data

contain creaky utterances as well as the other five phonation types. This time wpp is varied

in the range [0, 1] in steps of 0.1. For each step of the search an overall identification rate

(IR) score is retained. The setting 0.4 obtained the highest IR score and was therefore

used in the evaluation.

4.5.6 Statistical analysis

Typically in the literature, studies present evaluation metrics derived at the speaker level,

however to facilitate stable statistical analysis the metrics IR and IDA were derived at the

sentence level. This was done just for the voice quality dataset. For each phonation type,

one-way ANOVAs were carried out by treating the evaluation metric as the dependent

variable and algorithm type as the independent variable. Subsequent post-hoc analysis

(i.e. pairwise comparisons) was conducted using Tukey’s Honestly Significant Difference

(HSD) test.

All the evaluation metrics were also derived at the speaker level and these results are

also presented in the results.

4.6 Results

4.6.1 Standard Evaluation

The first set of results, from the analysis of the ARCTIC SLT and JMK databases are

presented in Table 4.2. One can observe largely similar results for the proposed method,

SE-VQ, compared with SEDREAMS. Identification rate (IR) was slightly better for SE-

VQ in SLT, and slightly worse in JMK. Identification accuracy (IDA) for SE-VQ was

better than SEDREAMS in both databases.

SE-VQ achieved the highest IR in SLT (98.91 %) with YAGA getting the highest in

JMK (99.28 %). Generally IR was very high across the six algorithms. Although DYPSA

showed the lowest score in both databases (97.48 % for SLT and 98.84 % for JMK),

differences were rather small. The YAGA method displayed the lowest IDA in JMK
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Table 4.2: Summary of evaluation results, with metrics derived at the speaker level, for
the ARCTIC SLT and JMK databases for the 6 algorithms. Best scores for each metric,
within each database are marked in bold.

Database Algorithm IR (%) MR (%) FAR (%) IDA (ms)

SLT

DYPSA 97.48 1.19 1.33 0.40
ESPS 98.90 0.58 0.52 0.22
SEDREAMS 98.71 0.31 0.98 0.26
SE-VQ 98.91 0.28 0.81 0.24
YAGA 98.55 0.36 1.09 0.21
ZFF 98.27 0.27 1.46 0.16

JMK

DYPSA 98.84 0.33 0.83 0.51
ESPS 99.10 0.50 0.40 0.52
SEDREAMS 99.21 0.21 0.58 0.46
SE-VQ 98.91 0.67 0.42 0.44
YAGA 99.28 0.07 0.65 0.34
ZFF 99.16 0.07 0.77 0.48

(0.34 ms). DYPSA showed the lowest accuracy on SLT (0.40 ms), though the ESPS and

ZFF method, both of which performed well on SLT, showed slightly degraded accuracy

performance in JMK.

The reader may note that the event level metrics (i.e. IR, MR and FAR) provide a

different performance indication that the accuracy metric (i.e. IDA) and that the two

groups are somewhat independent. For instance, it can be observed that although the

ZFF algorithm does not provide the best IR (indeed it provides the second worst) it does,

however, provide the best IDA. This indicates that although ZFF produces a relatively

high number of false alarms (due to excessive oscillations in the resonator output), when

a single GCI is detected its localisation is very precise.

The results here largely corroborate those presented in Drugman et al. (2012c) where

the ZFF, YAGA and SEDREAMS algorithms outperformed DYPSA in both event and

accuracy metrics. In terms of the proposed algorithm, SE-VQ, these results are encourag-

ing as they provide evidence that the post-processing component (used for removing false

positives in creaky regions) does not remove ‘true’ GCIs in non-creaky speech. The strong

performance of the YAGA algorithm for JMK may be partly explained be improved ro-

bustness at voice onset/offset. The lower performance for the female speaker, SLT, could

be due to the use of the IAIF algorithm which tends to have its effectiveness reduced for
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higher pitched voices.

4.6.2 Voice quality database

A summary of the evaluation metrics (derived at the speaker level) is presented for the

read-VQ recordings in Table 4.3. Metrics were obtained by each of the algorithms, for

each phonation type and averaged across the six speakers. The distributions of IDA and

IR metrics (derived at the sentence level) are plotted as a function of algorithm type and

for each phonation type in Figures 4.12-4.13 and 4.14-4.15, respectively. For the creaky

category, however, only the three selected speakers (with annotated creaky regions) are

represented in Table 4.5. In Figures 4.13 and 4.15 the creaky category also contains metrics

obtained from the BDL database. Note that the results for creaky voice will be considered

in Section 4.6.3.

Comparing the proposed method, SE-VQ, to SEDREAMS one can observe an improve-

ment in mean identification accuracy (IDA) across all phonation types. Considering the

IDA distributions in Figure 4.12 the largest difference was for tense voice and this was

found to be significant (p < 0.05). In terms of event detection metrics there was little

change, except for some improvement in the mean identification rate (IR) for harsh voice

and falsetto. The results for each phonation type are now described separately.

For modal voice the ESPS (0.29 ms), SEDREAMS (0.3 ms), SE-VQ (0.26 ms) and ZFF

(0.25 ms) algorithms provided the lowest mean IDA scores. ESPS and YAGA, however,

displayed relatively high levels of variance. DYPSA algorithm displayed significantly worse

(p < 0.001) IDA and IR scores than all the other algorithms. SEDREAMS (99.48 %) and

SE-VQ (99.41 %) algorithms providing high IR values and lowest variance. DYPSA and

ZFF produced the highest False Alarm Rate (FAR). These results follow a similar trend

to that seen in Section 4.6.1.

For tense voice ESPS (0.18 ms), SE-VQ (0.18 ms) and ZFF (0.17 ms) gave the lowest

average IDA scores. DYPSA (0.35 ms), SEDREAMS (0.24 ms) and YAGA (0.83 ms)

displayed both higher mean IDA values and higher levels of variance. It is interesting to

note that the mean IDA scores were reduced for tense voice compared to modal voice for

all algorithms with the exception of YAGA, which displayed the same IDA scores. For

IR, ESPS (99.64 %), SEDREAMS (99.74 %) and SE-VQ (99.76 %) produced the highest

values. The high mean Miss Rate for DYPSA (1.01 %) and ZFF (1.64 %) was the cause

of the relatively low IR for these two algorithms.

For breathy voice the opposite trend is observed in terms of IDA scores, compared

with tense voice, with all of the algorithms (with the exception of ZFF) displaying higher
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Table 4.3: Summary of evaluation results, with metrics derived at the speaker level, for
the 6 algorithms, separated by phonation type and averaged over the 6 speakers for the
read-VQ recordings. Both mean (x̄) and standard deviation (σ) are presented for the
identification rate (IR) and identification accuracy (IDA) metrics. Best mean scores within
each phonation type category are marked in bold.

Phonation
Algorithm

IR (%) MR (%) FAR (%) IDA (ms)
Type x̄ σ x̄ x̄ x̄ σ

Modal

DYPSA 96.30 1.82 1.55 2.15 0.58 0.31
ESPS 99.06 0.68 0.72 0.22 0.29 0.09
SEDREAMS 99.48 0.35 0.10 0.42 0.30 0.06
SE-VQ 99.41 0.36 0.19 0.40 0.26 0.06
YAGA 99.25 0.50 0.14 0.61 0.32 0.07
ZFF 98.93 0.68 0.04 1.03 0.25 0.02

Tense

DYPSA 98.08 0.69 1.01 0.91 0.35 0.14
ESPS 99.64 0.28 0.18 0.18 0.18 0.05
SEDREAMS 99.74 0.26 0.03 0.23 0.24 0.07
SE-VQ 99.76 0.25 0.04 0.20 0.18 0.07
YAGA 99.08 1.04 0.09 0.83 0.32 0.10
ZFF 98.34 1.33 1.64 0.02 0.17 0.03

Breathy

DYPSA 93.24 4.15 2.53 4.23 0.72 0.22
ESPS 97.29 3.64 1.77 0.94 0.46 0.18
SEDREAMS 99.01 1.37 0.20 0.79 0.40 0.10
SE-VQ 99.01 1.39 0.21 0.78 0.35 0.10
YAGA 98.82 1.40 0.26 0.92 0.42 0.09
ZFF 76.28 20.82 22.24 1.48 0.24 0.08

Harsh

DYPSA 90.27 7.59 6.70 3.03 0.74 0.38
ESPS 97.39 2.67 1.48 1.13 0.56 0.19
SEDREAMS 96.53 4.38 2.19 1.28 0.58 0.21
SE-VQ 97.64 3.09 1.59 0.77 0.54 0.24
YAGA 97.43 3.22 1.55 1.02 0.66 0.21
ZFF 82.30 27.89 16.71 0.99 0.67 0.56

Falsetto

DYPSA 80.15 20.44 18.43 1.42 0.52 0.15
ESPS 97.11 2.49 1.75 1.14 0.34 0.10
SEDREAMS 93.02 8.14 5.27 1.71 0.46 0.16
SE-VQ 94.52 8.10 4.56 0.92 0.41 0.15
YAGA 87.31 19.33 11.15 1.54 0.50 0.19
ZFF 94.83 6.08 1.01 4.16 0.38 0.13
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Figure 4.12: Distributions of Identification Accuracy (IDA), derived at the sentence
level, plotted as a function of algorithm type with separate panels for modal (a), tense (b),
breathy (c) and harsh voice (d). Note that the SEDREAMS method has been abbreviated
to SE for these plots.

IDA values compared to modal. ZFF (0.24 ms) and SE-VQ (0.35 ms) gave the lowest

mean IDA values, with DYPSA giving significantly higher (p < 0.001) IDA scores than
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Figure 4.13: Distributions of Identification Accuracy (IDA), derived at the sentence
level, plotted as a function of algorithm type with separate panels for falsetto (a) and
creaky voice (b). Note that the SEDREAMS method has been abbreviated to SE for
these plots.

the rest. However, although ZFF had significantly lower (p < 0.001) IDA scores than

the rest it also displayed significantly lower (p < 0.001) IR than the other algorithms due

to a high miss rate (22.24 %). This result for ZFF was examined and it was found that

the resonator output (shown in Figure 4.5), used for locating GCIs, can display a low

frequency drift off the zero-line for very breathy utterances. This can at times result in

the oscillating signal not producing a zero-crossing and, hence, a high miss rate. This

issue may be addressed by applying further processing to the oscillating signal. At the

same time, the ZFF method produced the lowest IDA (0.24 ms). Examining the 0-Hz

resonator output (used in the ZFF method) for breathy utterances, the oscillations in the

signal were found to closely match those in the DEGG signal (see Figure 4.5). As a result,

positive-going zero-crossings in this signal produced consistently aligned GCI estimates,

and hence a lower IDA. For other algorithms, e.g., SEDREAMS, the localisation of GCIs

is done on the LP-residual which does not display the same regularity, and the accuracy of

estimated GCIs suffers from the lack of prominent residual peaks. DYPSA also produced

a low IR (93.24 %), and the ESPS method produced a larger variance compared with the

SEDREAMS, SE-VQ and YAGA algorithms.

Like breathy voice, harsh voice also produced higher mean IDA scores, compared
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Figure 4.14: Distributions of Identification Rate (IR), derived at the sentence level,
plotted as a function of algorithm type with separate panels for modal (a), tense (b),
breathy (c) and harsh voice (d). Note that the SEDREAMS method has been abbreviated
to SE for these plots.

with modal voice, for all algorithms. The six algorithms displayed rather similar mean

IDA scores, but note however in Figure 4.12d the high variance in the IDA scores for the
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Figure 4.15: Distributions of Identification Rate (IR), derived at the sentence level,
plotted as a function of algorithm type with separate panels for falsetto (a) and creaky
voice (b). Note that the SEDREAMS method has been abbreviated to SE for these plots.

DYPSA and ZFF algorithms. In terms of IR, ZFF again displayed the lowest mean value

(82.3 %) due to a high miss rate. As before, this was due to a drift away from the zero-axis

of the resonator output. The SE-VQ algorithm provided the highest mean IR score (97.64

%) as well as the lowest mean IDA (0.54 ms).

Finally, for falsetto ESPS (0.34 ms), ZFF (0.38 ms) and SE-VQ (0.41 ms) displayed

the lowest mean IDA values, with ESPS and SE-VQ displaying the lowest variance. Again,

all algorithms showed higher mean IDA scores than those for modal voice. The highest IR

scores were found for ESPS (97.11 %), ZFF (94.83 %) and SE-VQ (94.52 %). The score

for DYPSA (80.15 %) and YAGA (87.31 %) were considerably lower due to a relatively

high miss rate. These surprisingly low scores were investigated and it found that the f0

ceiling is the likely cause. For instance, in both DYPSA and YAGA the maximum f0 value

is set to 500 Hz. However, in some of the falsetto utterances in the read-VQ database f0

exceeds 500 Hz and in these cases there were frequently missed GCIs.

4.6.3 Creaky database

The results for the ARCTIC-BDL database are presented in Table 4.4 and are separated

into All and Creaky speech regions. Included in Table 4.5 are the results for the annotated
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Table 4.4: Summary of evaluation results for the ARCTIC BDL database for the 6 algo-
rithms. Results are separated into two categories, one considering the full speech utter-
ances and the other considering performance just in creaky voice regions. Best scores for
each metric, within each category are marked in bold.

Regions Algorithm IR (%) MR (%) FAR (%) IDA (ms)

All

DYPSA 95.83 1.73 2.44 0.56
ESPS 98.30 1.07 0.63 0.31
YAGA 97.80 0.34 1.86 0.30
ZFF 86.80 0.18 13.02 0.28
SEDREAMS 97.65 0.59 1.76 0.33
SE-VQ 98.86 0.59 0.55 0.32

Creaky

DYPSA 82.90 2.98 14.12 1.26
ESPS 90.16 6.76 3.08 0.66
YAGA 82.01 0.10 17.89 0.37
ZFF 23.76 0.00 76.24 0.37
SEDREAMS 71.17 0.23 28.60 0.35
SE-VQ 97.32 0.59 2.09 0.28

creaky regions in the three speakers selected from the read-VQ database (presented results

are averaged across the three speakers). The distributions of IDA and IR scores for all

creaky regions (i.e. both from the BDL database and the three selected speakers from

read-VQ) are shown in Figures 4.13b and 4.15b, respectively.

Compared to SE-VQ, for the SEDREAMS method it was found that it produced both

a lower IDA and a higher IR score for the whole BDL database, for the creaky annotated

regions in BDL. Furthermore, the IR scores for SE-VQ were significantly higher than

SEDREAMS (p < 0.001) for the read-VQ dataset. The improvement in IR is due to a

considerably reduced false alarm rate, with only a slightly increased miss rate.

For the creaky regions in the BDL database the SE-VQ algorithm produced a high

IR (97.32 %) compared to the five other algorithms. For ESPS, this is due to a higher

miss rate. But for all other algorithms this is due to a considerably higher false alarm

rate. It is then likely that this improvement on the creaky regions contributes to a general

improvement in IR on the whole BDL database. SE-VQ also showed the lowest IDA for

the creaky regions in BDL, whereas all the algorithms (with the exception of DYPSA)

displayed a low IDA for the full BDL database.

For the creaky annotated regions in the read-VQ database SE-VQ again produced the

highest IR (87.87 %). The IR for SEDREAMS was significantly high than for DYPSA
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Table 4.5: Summary of evaluation results, with metrics derived at the speaker level, for
the three speakers selected from the read-VQ database. Both mean (x̄) and standard
deviation (σ) are presented for the identification rate (IR) and identification accuracy
(IDA) metrics. Best mean scores for each metric, within each category are marked in
bold.

Regions Algorithm
IR (%) MR (%) FAR (%) IDA (ms)
x̄ σ x̄ x̄ x̄ σ

read-VQ

DYPSA 63.89 16.27 5.62 30.49 1.87 0.89
ESPS 72.94 15.56 7.77 19.29 1.57 1.08
SEDREAMS 61.29 28.06 3.29 35.42 0.89 0.33
SE-VQ 87.87 2.97 6.84 5.29 0.70 0.07
YAGA 45.75 23.31 0.55 53.70 0.61 0.14
ZFF 60.09 20.55 6.72 33.19 1.13 0.79

(p < 0.01), YAGA (p < 0.001) and ZFF (p < 0.001), with a difference approaching

significance for ESPS (p = 0.06). This, however, is a reduced score compared to the

creaky regions in BDL. This was investigated and it was found that this is mainly due

to the difficulty in estimating an f0,mean which is used to define the centre frequency of

the resonator used in the post-processing step. Small variations in f0,mean have only a

minor effect on the resonator output. However, large differences can have a considerable

impact on the strength of the negative peaks. For the BDL utterances the creaky regions

were typically in a sentence-final position. Although creaky regions can display spurious

f0 values, by calculating f0,mean over the whole utterance (much of which is not creaky)

one can obtain a suitable setting for the resonator. However, for sentences which were

completely (or almost completely) produced with creaky phonation the f0 contour can

be extremely erratic and hence the f0,mean value may be unsuitable for the resonator.

This may explain the increase in both miss rate and false alarm rate. Nevertheless, the

approach used in SE-VQ for handling creaky regions results in a higher IR than the other

algorithms.

4.7 Discussion

The results in this study demonstrate that different voice qualities have a strong effect on

GCI detection performance of a host of state-of-the-art algorithms. This effect is largely

due to the different glottal closure characteristics of the phonation types (illustrated in

Section 4.2). As expected breathy voice, harsh voice and falsetto caused overall lower GCI
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detection accuracy compared to modal voice. This corroborates the initial findings pre-

sented in Cabral et al. (2011a) and some of the observations given in Tuan and d’Alessandro

(199). This is believe is due to the lack of prominent peaks and other discontinuities in

the analysis signals used in the various algorithms.

Apart from some qualitative observations in Degottex et al. (2009), GCI detection

studies have tended not to focus on creaky voice segments. In the results, however, creaky

voice clearly displayed the strongest negative effect on GCI detection performance, par-

ticularly causing a prohibitive amount of false alarms. For the proposed algorithm the

post-processing component brought about a large reduction in these false alarms and

produced a higher identification rate. At the same time, analysis of standard databases

(containing a large number of read sentences) revealed that this post-processing step did

not bring about any degradation in the performance. However, performance on utter-

ances which involved sustained production of creaky voice was lower than for utterances

with creaky voice occurring mainly in sentence-final position. Further qualitative analysis

suggested that this is due to inappropriate setting of the resonator’s centre frequency, fol-

lowing spurious f0 values for the sustained creaky sentences. Ongoing research is looking

at finding a more stable setting for this resonator to improve the detection performance

on creaky utterances.

A perhaps surprising result for the proposed algorithm was that larger improvements

in identification accuracy were observed for modal and tense voice compared to breathy

and harsh utterances. The dynamic programming component was designed to more con-

sistently select GCIs in cases where there was a lack of prominent peaks in the LP-residual.

Further analysis was carried out and it was found that these improvements in accuracy

for modal and tense voice were found to be largely at voice onset/offset. In these areas

speech that is perceived as modal or tense can display characteristics typically associated

with breathy voice (Nı́ Chasaide and Gobl, 1993). As a consequence, there will be a lack

of prominent LP-residual peaks, and the dynamic programming component appeared to

be suitable for addressing this. However, as the breathy and harsh voice were produced

throughout the entire sentence, very few prominent LP-residual peaks were found. As

a result the dynamic programming component cannot obtain a clear starting point and,

hence, it is difficult to provide improved accuracy. However, in expressive and conversa-

tional speech people vary their voice quality dynamically (Gobl and Nı́ Chasaide, 1992).

Hence, there will be regions where there are prominent LP-residual peaks, and it is hy-

pothesised that the dynamic programming approach will be more suited to this. Further

preliminary analysis has been carried out on vowels produced by changing the phona-

tion type from modal to breathy, and some evidence to support this hypothesis has been
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observed. However, this needs further, formal investigation.

Evidence from the results also demonstrate that some settings of state-of-the-art algo-

rithms may need to be altered to handle different phonation types. Although a maximum

f0 setting of 500 Hz (as is used in DYPSA and YAGA) is unlikely to be exceeded in stan-

dard speech synthesis corpora, for expressive and conversational speech, female speakers

using a falsetto voice may indeed exceed it (Podesva, 2007). Furthermore, breathy and

harsh voice tended to cause the output of the 0-Hz resonator, used in ZFF, to significantly

drift from the zero-line, which caused a high number of misses. Further processing of this

signal could be applied to rectify this problem.

A further interesting finding was the high performance of the ESPS algorithm, com-

pared with other state-of-the-art algorithms. The algorithm, originally presented in Talkin

(1989), is considerably older than the other methods evaluated and is rarely included

in GCI studies. Nevertheless, it produced consistently reliable results on the standard

database as well as for many of the phonation types (particularly falsetto).

Overall, no dramatic gender effect was observed, particularly with regard to the event

level metrics. There was, however, some effect on the precision of GCI localisation, with

female speakers displaying generally higher (though not dramatically higher) error values.

Female voices have often been described in the literature as having a breathier quality

to males, which would involve less abrupt glottal closure characteristics. This may have

affected the precision of the analysis.

4.8 Conclusions and future work

This chapter investigates the glottal closure characteristics of a range of phonation types

in relation to the various analysis signals relevant to GCI detection. Phonation type is

known to have a significant effect on a speaker’s voice quality and is frequently exploited

by speakers, particularly for certain expressive functions. A review is presented of the

strategies employed in a range of GCI detection algorithms. A new method, SE-VQ,

is outlined which involves modifications to the SEDREAMS algorithm in an attempt to

deal with the potential difficulties posed by non-modal phonation types. The proposed

algorithm uses a mean-based signal approach (as in SEDREAMS) for detecting intervals

within which GCIs are located. A dynamic programming component was then applied to

consistently select these locations, even when there were a lack of prominent peaks in the

LP-residual. Finally, a post-processing component, utilising features of the LP-residual

signal passed through a resonator, is applied to remove false alarms in creaky regions.

GCI detection algorithms were evaluated both on large standard databases, as well as
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on speech containing a variety of phonation types. The most striking result from the study,

in terms of the proposed method, was the high identification rate obtained on the creaky

voice data, which was considerably higher than that of any other method. A key factor

here was the post-processing method employed, which was also shown not to degrade the

performance on standard databases which contained less voice quality variation.

Other phonation types, like falsetto and harsh voice, caused considerable degradation

on the GCI detection compared to modal voice. This may have implications for analysis

methods used to model highly expressive speech.

Future work will involve further collection of creaky voice data occurring in different

contexts, with simultaneous EGG recordings. This will be used to more comprehensively

evaluate GCI detection performance on this particular voice quality.

4.9 Applications

The proposed GCI detection algorithm, SE-VQ, has potential for usage in a variety of

applications. In particular this method has strong potential for exploitation in parametric

speech synthesis and voice modification methods that seek to produce a variety of voice

types. One specific collaborative work the present author has been engaged in is modelling

creaky excitations for use in a statistical parametric speech synthesis system (Drugman

et al., 2012b). The new proposed method is crucial for providing a suitable modelling of

the temporal dynamics of creaky voice which is necessary to produce synthetic speech with

naturally sounding creaky segments. Other potential uses for the SE-VQ method include

certain glottal inverse filtering methods that require precise positioning of the GCI (e.g.,

closed-phase inverse filtering or mixed-phase decomposition). Also, as knowledge of GCIs

is a necessary prerequisite for many glottal source analysis and modelling methods (for

example the one described in Chapter ??) the usefulness of the SE-VQ for this is evident.
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Chapter 5

Automating manual user strategies

for precise glottal source analysis

Summary

A large part of the research carried out at the Phonetics and Speech Laboratory is con-

cerned with the role of the glottal source in the prosody of spoken language, including its

linguistic and expressive dimensions. Due to the lack of robustness of automatic glottal

source analysis methods, the tendency has been to use labour intensive methods which

require pulse-by-pulse manual optimisation. This has affected the feasibility of conduct-

ing analysis on large volumes of data. To address this, a new method is proposed for

automatic glottal source parameterisation by simulating the strategies used in the man-

ual optimisation approach. The method involves a combination of exhaustive search,

dynamic programming and optimisation methods, with settings derived from analysis of

previous manual glottal source analysis. A quantitative evaluation demonstrated clearly

closer model parameter values to the reference values, compared with a standard time

domain-based approach and a phase minimisation method. A complementary qualitative

analysis illustrated broadly similar findings, in terms of glottal source dynamics in various

placements of focus, when using the proposed algorithm compared with a previous study

which employed the manual optimisation approach.

83
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5.1 Introduction

A specific research focus at the Phonetics and Speech Laboratory in Trinity College Dublin

is the role of the glottal source in speech. This on-going work is dedicated both to de-

scriptive studies regarding the prosody of the voice as well as the development of more

robust, automatic algorithms. Of particular interest is the role of the voice in the prosody

of speech, i.e. how dynamic, temporal variation of the entire glottal source (f0 and phona-

tion quality), provides both the underlying linguistic prosody as well as its expressive

dimension. As part of this endeavour, previous work has looked at the glottal source cor-

relates of focus and deaccentuation (Yanushevskaya et al., 2010; Nı́ Chasaide et al., 2011).

These studies have involved the use of labour intensive methods which require pulse-by-

pulse manual fine-tuning to ensure precise glottal source characterisation. This chapter

looks at methodological developments, drawing on data where utterances were elicited

with different focal accentuation patterns. A new method is proposed for parameterisa-

tion of the estimated glottal source derivative that helps overcome some of the difficulties

that arise with standard automatic analysis methods, by simulating the strategies used in

the manual fine-tuning approach.

To derive an estimate of the differentiated glottal source signal one can first consider

the speech production process (in the frequency domain) as:

S(f) = G(f)V (f)L(f) (5.1)

where the spectrum of the speech output, S(f), is the product of the three components

G(f), V (f) and L(f), where G(f) is the spectrum of the glottal flow signal (i.e. the glottal

source spectrum), V (f) is the transfer function of the vocal tract, L(f) is the spectral effect

of sound radiation at the lip opening and f is frequency in Hz. In the time domain, the

effect of radiation at the lips is typically modelled as a first order differentiator, in which

case Eq. (5.1) can be reduced to:

S(f) = Gdiff (f)V (f) (5.2)

where Gdiff is the spectrum of the differentiated glottal flow. Thus, the glottal source

derivative can be obtained by inverse filtering if the vocal tract transfer function is known.

However, V (f) is not directly observable and as a result accurate estimation of the

glottal source signal becomes an immensely difficult signal processing task (see e.g., Walker

and Murphy, 2007; Alku, 2011). V (f) is often treated as an all-pole model which can

facilitate the use of Linear Predictive Coding (LPC) for estimating the parameters of the
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Figure 5.1: Screenshot of the in-house software for carrying out manually optimised
inverse filtering and parameterisation.

vocal tract model. 1 Many automatic algorithms exist for vocal tract inverse filtering,

including: closed-phase methods (Wong et al., 1979; Alku et al., 2009), iterative and

adaptive Linear Predictive Coding (LPC) based methods (Alku, 1992), and methods which

consider the mixed-phase properties of speech (Bozkurt et al., 2005; Drugman and Dutoit,

2009).

Due to the frequent problems of automatic algorithms, the research group has tended

to rely on an inverse filtering method which derives initial estimates using an automatic

closed-phase inverse filtering technique followed by an optimisation procedure involving

manual fine-tuning (see the screenshot of the software in Figure 5.1). The user modifies

the estimated formant frequencies and bandwidths and utilises both time and frequency

domain displays to obtain maximum formant cancellation (see Chapter 2, Section 2.3.5

and Gobl and Nı́ Chasaide, 1999a).

The inverse filtering of the speech signal provides an estimate of the differentiated

glottal source, which one can then characterise by fitting the Liljencrants and Fant (LF)

source model (Fant et al., 1985a) to the individual glottal pulses, thus facilitating the

parameterisation of important features in the source signal. Again, an automatic algorithm

is first used to derive an initial model fit, which is followed by manual fine-tuning to get an

improved fit. As with the inverse filtering, the user is visually guided to ensure optimisation

in both the time and frequency domain. Furthermore, the user ensures that subsequent

1Note, however, that this is a simplification of the vocal tract system which does not consider the zeros
which are often present in nasals
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model pulses do not have unwarranted discontinuities. The manual fine-tuning involved

in both the inverse filtering and the source parameterisation is extremely labour intensive.

However, due to the limitations of current automatic algorithms, this approach has been

deemed necessary if a precise description of the glottal source is required.

This chapter describes an automatic glottal source derivative parameterisation method

which attempts to simulate some of the strategies used by the researcher when applying

the visually guided optimisation of the model fit. To do this, an exhaustive search method

is initially used which provides the N most suitable settings for the modelling, in terms

of both time and frequency domain criteria. A dynamic programming algorithm is then

used to select the best ‘path’ of parameter values by considering both the ‘target cost’ (i.e.

the temporal and spectral match of the modelled pulses) and the ‘transition cost’ (i.e. the

continuity in the parameter trajectories of the modelled glottal pulses). An optimisation

method is then employed to refine the fit, again considering time and frequency domain

criteria.

To evaluate the new method it’s performance is compared to that of a standard auto-

matic algorithm based on model fitting in the time domain as well as a parameterisation

method based on phase minimisation. Reference values were obtained from manually op-

timised glottal source analysis. The effect of applying a widely used automatic inverse

filtering algorithm was compared with a manual fine-tuning inverse filtering approach and

demonstrate the effect on parameterisation. Furthermore, evaluation is carried out on

a larger dataset where reference parameter values are obtained from simultaneous elec-

troglottographic (EGG) signals.

5.2 State-of-the-art

Given an estimate of the glottal source derivative, a subsequent parameterisation stage is

usually carried out in order to quantify the salient features of the signal. A recent study

reviewed some of the more common methods typically used (Alku, 2011) and a review was

also given in Chapter 2, Section 2.3.3.

This study uses the fitting method described in Strik et al. (1993) and Strik (1998)

as a comparison as, like the proposed method, it operates on inverse filtered signals.

Furthermore this approach is used in some current speech technology systems (see e.g.,

Cabral et al., 2011b). A further, more recently developed, comparison algorithm is also

used (Degottex et al., 2011b) which estimates the shape of a glottal source model without

the use of glottal inverse filtering (see Section 5.4.3).
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5.3 Proposed method

A method is described here for estimating LF model parameter values (named DyProg-

LF) by considering some of the information typically available to a researcher using a

manual fine-tuning approach, i.e. time domain and frequency domain information, and

overall parameter trajectory. It is assumed that the glottal source derivative has been de-

rived beforehand using either an automatic method or using a manual fine-tuning method

(as is used here).

5.3.1 LF model

The glottal source model used in the DyProg-LF method is the LF model. The model

is described in Chapter 2, Section 2.3.2, with a more comprehensive description in Gobl

(2003) and Fant et al. (1985a).

5.3.2 GCIs, f0 and EE

In order to estimate f0 and EE values from the glottal source derivative, the glottal closure

instants (GCIs, which correspond to te in the LF model) are estimated using the SE-VQ

algorithm described in Chapter 4. GCIs are shifted to the position of the maximum

negative amplitude in the differentiated glottal source waveform, in the vicinity of the

detected GCI. The maximum negative amplitude is used as the EE parameter value and

f0 is determined by the reciprocal of the duration between adjacent GCIs (in seconds).

5.3.3 Exhaustive search of Rd

Standard automatic time domain approaches to LF model fitting typically involve esti-

mating initial parameter values by direct measurements of the differentiated glottal source

pulse and then refining these estimates using an optimisation procedure. One common

problem with this approach is that direct measurements can often yield poor initial pa-

rameter values. This is frequently due to inconsistency in marking the point of glottal

opening, to (Alku et al., 2002). Subsequent use of an optimisation algorithm does little

to rectify the problem. This is highlighted in Figure 5.2 where the final pulse from the

time domain-based method (dot-dashed line) changes shape considerably from the previ-

ous pulses. In the second last pulse for the standard method the OQ value is around 0.5

and around 0.7 for the final pulse, whereas for the manual method it is approximately 0.5

for both pulses. An OQ of 0.5 is normally associated with a modal phonation type, with
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Figure 5.2: Estimated differentiated glottal source signal (solid blue line), a synthe-
sised source signal using manually tuned parameters (red dashed line) and a source signal
derived using parameters estimated using the standard automatic time based parameteri-
sation method (black dot-dashed line). The change in the model setting in the final pulse
highlights the potential for inconsistency.

0.7 indicating a laxer quality. As a result this type of sudden change could seriously affect

the findings using this type of automatic parameterisation method.

To overcome this an exhaustive search method is proposed which involves the genera-

tion and analysis of a wide range of LF-model parameter configurations, and saving those

configurations that minimise a specific error function.

However, to cover the full range of possible LF model configurations would have high

computational load. Therefore, rather than searching all R-parameter combinations, the

search is simplified by varying only Rd, and generating default Ra, Rk and Rg values from

this (Fant et al., 1995, these equations are shown in Chapter 2, Section 2.3.2; Eqs. 2.17 -

2.19). Rd is changed in steps of 0.1 within the range [0.3, 3].

The search is done by first taking a GCI centred frame of the estimated glottal source

derivative, g′(n), and windowing it using a Hanning window. A frame length, L, of three

local glottal periods is used to ensure clear harmonic peaks in the spectrum. The amplitude

spectrum in dB is then calculated from the windowed glottal source derivative segment

using the FFT. Harmonic amplitudes are measured in the spectrum, by searching the

vicinity of integer multiples of the local f0 up to a specific maximum frequency (Hmax).

Although methods exist for estimating the ‘Maximum Voiced Frequency’ (Stylianou, 2001;

Zivanovic et al., 2007), these methods can at times lack robustness. As a result researchers

often set a fixed Hmax (Pantazis and Stylianou, 2008; Drugman et al., 2009c), and, hence,

Hmax is set to 3 kHz. For each step in the search an LF model pulse is generated using f0
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and EE (previously calculated) and using Ra, Rk and Rg as derived from the current Rd

value. A synthetic signal is obtained by concatenating the LF pulses thereby producing a

three-pulse segment, again centred on a GCI. The spectrum and harmonics are measured

as above. For each Rd (and, hence, each generated three-pulse segment), an error value

is measured between the two harmonic sets using:

spec err = {1− |cor{hU(m), hLF (m)}|} · ws 1 ≤ m ≤ N ∈ [0, 1] (5.3)

where hU and hLF are the harmonic amplitudes measured from the estimated glottal source

derivative and the synthesised LF model signal respectively, N is the number of harmonics

of frequencies below Hmax, cor{.} is the Pearson correlation between the harmonics hU

and hLF , and ws is a constant weight (see Section 5.4.2). A time domain error value is

measured using:

time err = {1− |cor{gLF , g′(t)}|} · wt ∈ [0, 1] (5.4)

where gLF is a synthesised LF model source signal of length L and set using the current

Rd value, t is the sample range from the start and end point of the current frame, and

wt is a constant weight. Both time and frequency domain cost elements are designed to

lie within the range [0, 1]. Another advantage of these correlation based error criteria

is that, unlike more common error criteria (e.g., root-mean squared error), the value is

independent of potential errors in EE.

The Ncand (empirically set to 5) Rd values are considered, that minimise the total error

function:

total cost =
spec err + time err

2
∈ [0, 1] (5.5)

5.3.4 Dynamic programming

A dynamic programming method is used to select the optimal path of Rd values through

the input speech signal. The particular dynamic programming method used here is de-

scribed in Ney (1983) and has been used in the popular get f0 pitch tracker (Talkin, 1995),

as well as in the SE-VQ algorithm (Chapter 4).

The target cost, d(i, j), is defined as the error value calculated in the exhaustive search

(Eq. 5.5) for each Rd candidate in each analysis frame, where 1 ≤ j ≤ Ncand, 1 ≤ i ≤ M

and M is the number of GCIs (i.e. the number of analysis frames). The transition cost

can be written as:
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δi,j,k = {1− cor {segi,j, segi−1,k}} · wtr · ss ∈ [0, 1] (5.6)

where segi,j refers to a single generated LF model pulse using the R-parameters predicted

from the j-th Rd candidate at frame i and segi−1,k refers to an LF pulse generated using

k-th Rd candidate at the previous frame, i − 1. This transition cost is based on the

observation that, like the vocal tract, glottal source pulses should be reasonably slowly

varying over a short timespan (e.g., 20 ms).

The transition cost is also dynamically modulated by the factor ss (the spectral sta-

tionarity measured used in Talkin, 1995):

ss =
0.2

itakura(fi, fi−1)− 0.8
∈ [0, 1] (5.7)

where itakura(.) is the Itakura distortion measure (Itakura, 1975)2 of a glottal source

derivative frame fi (GCI centred, and with a duration three times the local glottal cycle)

and the frame centred on the previous GCI, fi−1. ss tends towards 1 when the spectral

characteristics of adjacent frames are very similar and goes closer to 0 if the frames show a

high degree of difference. This factor affects the transition cost, δi,j,k, so that if there is an

area of rapid change (e.g., at consonant-vowel transitions, at voice onset and offset, or for

certain voice qualities involving irregular periodicity, such as creaky and harsh voice 3) the

transition cost has less of an effect. However, for relatively stable regions (e.g., the centre

of vowels) the transition cost has a stronger effect in maintaining a smooth parameter

contour. An example of the ss contour is shown in Figure 5.3 where ss declines at the

voice offset around 1.02 seconds and remains low for the subsequent creaky voice region.
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Figure 5.3: ss contour for sentence spoken by a male speaker. There is voicing offset from
around 1.02 seconds and the region from around 1.08 to the end contains creaky voice.

2Note that the minimum Itakura distortion value is 1, and its upper bound value tends towards infinity.
3However, such voice qualities were not included in the data used in the current chapter
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An objective function is, hence, defined for a given frame i incorporating the above

target and transition costs (Eq. 5.5 and Eq. 5.6, respectively):

Di,j = di,j + min
k∈Ncand

{Di−1,k + δi,j,k}, 1 ≤ j ≤ Ncand (5.8)

which is initialised with:

Do,j = 0, 1 ≤ j ≤ Ncand (5.9)

The vector q(i) is used to save the index of the optimal Rd (obtained by argmin
j

(Di,j)

for 1 ≤ i ≤M).

An illustration of the optimal Rd path is shown in Figure 5.4 along with the Ncand

Rd candidates at each frame (corresponding to each GCI). One can observe in the region

from 0.9 to 1.0 seconds, just before the consonantal occlusion, that there is clearly rapid

change in the signal and as a result Rd settings change quite considerably. This is due to

the low spectral stationarity values in this region which severely lessens the effect of the

transition cost. However, for the very stable regions (e.g., 0.7 to 0.85 seconds) the high

spectral stationarity of successive frames ensures the transition cost has a strong effect

and as a result very stable Rd values are observed.

5.3.5 Optimisation

Although the Rd parameter can be used to characterise many of the glottal pulse types

arising in phonation types on a lax to tense continuum, it is likely that some glottal pulses

will exist outside the constraints of Rd. Furthermore, it is not the intention to reduce the

degrees of freedom of the model. To overcome this, parameter values are refined using an

optimisation method. For each analysis frame Ra, Rk and Rg are derived from the Rd

value, selected from the dynamic programming method. A simplex-based method (Nelder

and Mead, 1965) is then used, which allows unbounded multi-variable optimisation. The

three R-parameters are allowed to vary to minimise the same error function shown in Eq.

(5.5).

5.4 Evaluation

In this section the procedure used to evaluate the DyProg-LF method is described. The

experiments were designed to determine whether the method produces a better parame-

terisation of the glottal source than the comparison algorithms. Also investigated was the
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Figure 5.4: Voice source waveform estimated using the manual method and superimposed
GCIs (top panel). Rd candidates (x’s) and optimal Rd trajectory (line) plotted over time
(bottom panel).

effect of manual versus automatic inverse filtering on the results of the parameterisation.

Two types of evaluation were carried out; one objective and one qualitative.

5.4.1 Speech data

Speech data from six male speakers were used in the first part of the objective evaluation

(see Section 5.4.5). Each speaker uttered the sentence WE WERE aWAY a YEAR ago,

with narrow focus on each of the potentially accented syllables (WE, WERE, -WAY and

YEAR) with both rising and falling pitch patterns. A broad focus and a deaccented

rendition of the utterance were also recorded. Overall there were 10 utterances per speaker

with the exception of one, from whom the 4 rising pitch utterances were not elicited. The

speech samples for this speaker (6 utterances) were used for setting the weights (see Section

5.4.2) and were subsequently excluded from the testing, leaving 50 utterances for the first

part of the objective evaluation.

For the qualitative evaluation (described in Section 5.4.7) a set of utterances produced

by a male speaker was used (this is the same set of utterances as was analysed in Nı́

Chasaide et al., 2011). The sentence and the focus placements were the same as above,
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but in this case only the narrow focus conditions was used.

Audio was captured in a semi-anechoic recording studio using high quality recording

equipment (a B & K 4191 free-field microphone and a B & K 7749 pre-amplifier) and was

digitised at 44.1 kHz (using a LYNX-two sound card), which was subsequently downsam-

pled to 10 kHz. The DC-component and very low frequency components were removed

using an 8th order high pass Butterworth filter with a cut-on frequency of 60 Hz. Filtering

was carried out forwards and backwards to maintain the original phase spectrum of the

signal.

For the second part of the objective evaluation (see Section 5.4.6) speech data from

an American Female (SLT) and an American Male (BDL) speaker from the ARCTIC

database (Kominek and Black, 2004) were used. The SLT set contained 1120 sentences

and the BDL set contained 1130 sentences. These sentences involved a wide phonetic

coverage and were recorded with simultaneous electroglottographic (EGG) signals. Both

audio and EGG signals were originally sampled at 32 kHz, but were downsampled to 16

kHz for analysis.

5.4.2 Weight setting

In the evaluation, the DyProg-LF method is configured as described in Section 5.3. How-

ever, the weights ws, wt and wtr, which are parameters of the dynamic programming

method (Eq. 5.8), need to be set. The setting of these weights is crucial for modelling

the relative importance of different types of information used in the manual fine-tuning

approach and, hence, they need to be set carefully.

Using the speech data from one speaker (see Section 5.4.1) an exhaustive search was

conducted to test all combinations of the three weights in the range [0, 1] with a step of 0.1

(1331 possible combinations). Note that all three cost elements were designed to lie within

the range [0, 1]. For each combination, analysis was carried out on the 6 sentences and a

synthetic glottal source signal was generated using the extracted parameter values. This

was compared to a synthetic glottal source signal generated using the reference parameter

values, by calculating the Pearson correlation coefficient (i.e. a measure of the similarity

of the modelling by the automatic method compared to the modelling by the manual

fine-tuning method was derived). The combination with the highest correlation score

(averaged across the 6 sentences) was kept as the setting for the weights. The analysis

resulted in the weights 0.6, 1 and 0.5 for ws, wt and wtr respectively. This suggests that

the manual fine-tuning user favours the time domain information for fitting the model,

but frequency domain and continuity information also carry importance. These weights
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appear to corroborate the author’s subjective impression of the relative importance of

these components.

5.4.3 Comparison algorithms

To evaluate the performance of the DyProg-LF method, two algorithms were selected

from the literature to use as comparison. One algorithm is a traditional method for fitting

LF model pulses to a given estimated glottal source derivative (Strik, 1998, see Chapter

2, Section 2.3.3 for the description). The second is a more recent development which

estimates the Rd parameter of the LF model (Fant et al., 1995) by optimising a phase-

based objective function (Degottex et al., 2011a, described in Chapter 2, Section 2.3.3).

5.4.4 Reference values

Objective evaluation of glottal source parameterisation is a difficult task. Some researchers

tend to use synthetic stimuli to provide a quantitative evaluation with known reference pa-

rameter values (see e.g., Strik, 1998; Drugman et al., 2011). However these signals may lack

the very details that cause trouble for glottal source parameterisation (e.g., the presence

of aspiration noise). Others use EGG signals for obtaining reference values (Veeneman

and BeMent, 1985; Henrich et al., 2001). It is not generally feasible, however, to obtain a

full set of glottal source parameter values from the EGG signal. Other studies (e.g., Airas

and Alku, 2007; Kane et al., 2010; Drugman et al., 2011) evaluate parameterisation on the

basis of the ability of extracted parameters to differentiate voice quality. In the present

chapter the DyProg-LF method is evaluated on two separate sets of speech data, using

different methods for obtaining reference values in each.

In the first set, speech signals were inverse filtered by a member of the research group

at the Phonetics and Speech Laboratory using the manual fine-tuning software (Gobl

and Nı́ Chasaide, 1999a), where the user adjusts the formant frequencies and bandwidths

for each analysis frame and uses time and frequency displays to achieve optimal formant

cancellation.

With an estimated glottal source derivative, initial LF model settings were automat-

ically derived for each glottal pulse. A member of the research group in the Phonetics

and Speech laboratory, who is highly experienced with this type of analysis, then used

the manual fine-tuning technique in order to ensure optimal fitting of the LF model to

each glottal pulse of the glottal source derivative. These references values were obtained

for a relatively small dataset, given the labour intensive nature of obtaining these values.

Nonetheless, this approach provides a highly reliable means of evaluation and this set is
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called ‘carefully controlled data’. The reader can refer to Section 2.3.5 for a discussion of

the criteria used in this process.

A second set was used to evaluate the performance of the DyProg-LF algorithm on

larger volume of data containing wide phonetic coverage. As it was simply unfeasible

to obtain manually derived reference values for this larger set of data, a single glottal

source parameter, the open quotient (OQ), was instead derived from the simultaneous

EGG signals available with this data. Glottal closure instants (GCIs) and glottal opening

instants (GOIs) were derived from the EGG signal using the SIGMA method (Thomas

and Naylor, 2009). This method involves applying a stationary wavelet transform and

subsequent use of the group delay function in order to derive candidate values. Candidate

selection is carried out using a K-means algorithm, which is used to separate the candidates

into two clusters based on a three dimensional feature vector.. The glottal open duration

was calculated from GCIs and GOIs and normalised to the local glottal period to derive

reference OQ values.

5.4.5 Objective evaluation - Part 1: carefully controlled data

Using the first set of reference values, the performance of the DyProg-LF method was

evaluated by comparing it to the performance of the comparison methods (described in

Section 5.4.3). The four R-parameters, Rg, Rk, Ra and Rd were considered and relative

error was used as an evaluation metric:

Relative error =
|paramref − paramest|

paramref

(5.10)

where paramref are the reference parameter values and paramest are the parameter values

as estimated by the automatic algorithms. Note that as the Degott-LF method only

estimates the Rd parameter, comparison between all three parameterisation algorithms

was only carried out for this parameter. For the other three parameters only the Strik-LF

method was compared to the proposed algorithm.

As another goal of the evaluation is to assess the effect of automatic versus manual

inverse filtering, the above experiments were carried out both on glottal source signals

obtained using the manual fine-tuning approach and also on glottal source signals auto-

matically derived using the Iterative and Adaptive Inverse Filtering (IAIF) method (Alku,

1992). A previous study found complex cepstrum-based decomposition (Drugman et al.,

2009a) and closed-phase inverse filtering (Yegnanarayana and Veldhuis, 1998) to outper-

form IAIF in certain experiments (Drugman et al., 2011). However, the complex-cepstrum
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method does not separate the glottal return phase from the vocal tract component, an im-

portant aspect of the glottal pulse which the author wishes to consider in this study. This

is because both the vocal tract and glottal return phase are contained with the minimum-

phase component of the speech frame. Closed-phase inverse filtering is also very sensitive

to slight errors in the positioning of the glottal closure and glottal opening instants. In

fact, experimentation with IAIF by the author (see Chapter 6) has suggested much more

comparable performance to these methods than has previously been reported. Further-

more, recent speech synthesis methods utilising glottal inverse filtering have opted to use

IAIF over other methods (Cabral et al., 2011b; Raitio et al., 2011).

Statistical analysis

The aim of the statistical analysis was to test the effect of parameterisation algorithm

type and inverse filtering method on the evaluation metrics and to generalise over both

speakers and utterances. Linear mixed-effects modelling (Baayen, 2008) facilitates doing

this in one single analysis rather than conducting two separate ANOVAs (in order to

generalise over both speakers and utterances), and, hence, is used in the current study.

This type of statistical analysis has become popular in speech analysis papers in recent

years as an elegant method for modelling fixed and random effects in combination (used

for example in a study by Vainio et al., 2010 on a similar topic).

Both parameterisation algorithm type and inverse filtering method are treated as fixed

effects, with speaker and utterance treated as random effects and with each evaluation

metric considered as the dependent variable. p-values were obtained using Monte Carlo

Markov Chain (MCMC) sampling (using 10,000 samples).

The statistical analysis was carried out using the R statistical software platform using

the lme4 package developed by Baayen (2008). The linear mixed effects modelling was

carried out using the following command (here exemplified):

Rg_err.lme <- lmer(Rg_err~param * IF+(1|sentence)+(1|speaker),data=timeFreq_data)

where param is the variable name for parameterisation algorithm type factor and IF is the

variable name for the inverse filtering type factor.

Estimation of p-values using MCMC sampling is done using:

Rg_err.p <- pvals.fnc(Rg_err.lme)

Note that this procedure was carried out only for Ra, Rk and Rg. As the Degott-LF

method does not involve glottal inverse filtering, the parameterisation and inverse filtering

groups were merged for analysis of the Rd parameter. This gave 5 methods: Degott-LF,
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proposed (DyProg-LF) with manual inverse filtering, proposed with IAIF, Strik-LF with

manual inverse filtering and Strik-LF with IAIF. So, for the Rd parameter there was only

a single fixed effect.

5.4.6 Objective evaluation - Part 2: large database analysis

For the second part of the objective evaluation using the larger dataset absolute error was

used as the evaluation metric, as the OQ parameter is bound in the range [0, 1]. For each

sentence in the SLT and BDL datasets absolute error values were calculated for the three

algorithms. The median of these error values, for each method, was calculated for every

sentence and these were used as datapoints in the subsequent statistical analysis.

Note that for the DyProg-LF method and for Strik-LF, OQ can easily be derived from

a given LF model fit using Eq. (2.20). For Degott-LF, however, as it only estimates the

Rd parameter, the conversion to OQ is less straightforward. In this study OQ was derived

from Rd for Degott-LF by exploiting previous regression analysis reported in (Fant et al.,

1995), using the equations in Chapter 2, Section 2.3.2. Rgp and Rkp are derived from Eqs.

2.19 and 2.18, respectively. OQ is derived using Rgp and Rkp as inputs to Eq. (2.20). For

this process the EE value is measured as the strongest negative peak in the estimated

glottal source derivative, in the vicinity of the estimated Rd position. Although this is less

straightforward for comparing performance with Degott-LF, the fact that OQ is the only

LF model-based parameter which can be estimated from the EGG signal necessitates this

procedure.

Statistical analysis

To investigate whether there were significant differences between the OQ values derived

using the DyProg-LF method and the comparison methods a one-way ANOVA was applied

with OQ absolute error as the dependent variable and algorithm type as the independent

variable, for the SLT and BDL databases separately. Pairwise comparisons were carried

out using Tukey’s Honestly Significant Difference (HSD) test.

5.4.7 Qualitative evaluation

Although the objective evaluation described above provides a strong test of the perfor-

mance of the method, a qualitative examination of the extracted parameter contours will

provide complementary evidence of its performance.
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A recent study by Nı́ Chasaide et al. (2011) presented an analysis of glottal source

dynamics in utterances with varying focal placement (see Section 5.4.1). The glottal

source data provided evidence for a tenser mode of phonation in focused syllables. One

of the parameters analysed, the open quotient (OQ, see Eq. 2.20), has been shown to be

effective in differentiating breathy and tense voice (Hanson, 1997; Airas and Alku, 2007)

and for the qualitative evaluation this parameter will be focused on.

The evaluation involves examining the contours for OQ, as extracted by the manual

method, the DyProg-LF method and the standard time-domain method (Strik-LF), and

analysing to what extent the results presented in Nı́ Chasaide et al. (2011) are replicated

when using automatic algorithms. Note that the Degott-LF method was excluded from

this part of the evaluation.

5.5 Results

5.5.1 Objective evaluation

The distributions of relative error scores, between reference and estimated parameter val-

ues, are presented in Figures 5.5 - 5.8, with a summary of the statistical analysis for the

three parameters, Ra, Rk and Rg presented in Table 5.2.

For Rg the boxplots in Figure 5.5 demonstrate a clearly lower relative error for the

proposed parameterisation method (DyProg-LF) for both automatically and manually in-

verse filtered signals. This observation is supported by the statistical analysis and shown

to be significant [t = 7.521, pMCMC = 0.0001]. Another important observation is that the

variance in relative error values is considerably larger for the standard parameterisation

method compared to DyProg-LF. Interestingly a comparison of the distributions of rela-

tive error values for automatic and manual inverse filtering methods shows no significant

differences [t = 0.173, pMCMC = 0.8734].

A similar trend can be observed for the Rk parameter (see Figure 5.6) with the dis-

tribution of relative error values for the DyProg-LF method being significantly lower [t

= 5.696, pMCMC = 0.0001] than those for the time domain method. Again the inverse

filtering type is found not to have a significant effect [t = -1.016, pMCMC = 0.3216]. The

size of the variance in the manual inverse filtering condition is found to be similar across

the two parameterisation algorithms; however when automatic inverse filtering is used

the standard parameterisation method produces a considerably larger variance in relative

error scores.

Relative error scores are generally higher for Ra compared to the other two parameters
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Figure 5.5: Distributions of relative error scores for Rg as a function of the four possible
combinations of parameterisation algorithm type and inverse filtering type. Prop indi-
cates proposed parameterisation method (DyProg-LF) with Strik indicating the standard
time domain method. IAIF stands for automatic iterative adaptive inverse filtering with
manIF being the manual inverse filtering method.

(see Figure 5.7). Here automatic inverse filtering has a very clear negative impact on

relative error scores compared to manual inverse filtering [t = -5.820, pMCMC = 0.0001].

Despite the strong effect of inverse filtering method, the improvement in relative error

scores for the DyProg-LF method still achieves significance levels [t = 2.579, pMCMC =

0.0094]. It is clear from the boxplot in Figure 5.7 that automatic inverse filtering severely

affects the relative error score for the DyProg-LF method. However, the mean error is still

lower than the mean error for the standard method in both inverse filtering conditions.

Relative errors are shown for Rd in Figure 5.8. Statistical analysis revealed no signif-

icant effect of analysis method on the relative error score [t = -1.839, pMCMC = 0.072].

Despite this DyProg-LF combined with manual inverse filtering provided the lowest mean

error scores. However, the Strik-LF method provided much closer relative error scores
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Figure 5.6: Distributions of relative error scores for Rk as a function of the four possible
combinations of parameterisation algorithm type and inverse filtering type. Prop indi-
cates proposed parameterisation method (DyProg-LF) with Strik indicating the standard
time domain method. IAIF stands for automatic iterative adaptive inverse filtering with
manIF being the manual inverse filtering method.

to the DyProg-LF method than for the other three Rd parameters. Degott-LF also gave

similar mean relative error scores, but with higher levels of variance than for the other

methods.

Results from the second part of the objective evaluation are illustrated in Figure 5.9,

with the distributions of OQ errors plotted as a function of algorithm type for the SLT (left

panel) and BDL (right panel) databases. ANOVAs revealed significant differences between

the algorithms for both SLT [F(2,3357) = 7403.1, p < 0.001] and BDL [F(2,3387) = 1625.8, p <

0.001]. Posthoc testing using Tukey’s HSD demonstrated highly significant differences (p

< 0.001) for all pairwise comparisons for both SLT and BDL datasets. Considering Figure

5.9 it is clear that the DyProg-LF method produces the lowest OQ error compared to the

two other algorithms. Strik-LF produced relatively high error scores with a very large
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Figure 5.7: Distributions of relative error scores for Ra as a function of the four possible
combinations of parameterisation algorithm type and inverse filtering type. Prop indi-
cates proposed parameterisation method (DyProg-LF) with Strik indicating the standard
time domain method. IAIF stands for automatic iterative adaptive inverse filtering with
manIF being the manual inverse filtering method.

variance for BDL. Overall error scores were lower for the male speaker (BDL) than the

female speaker (SLT). The higher f0 in the female voice may have reduced the effectiveness

of the glottal inverse filtering, resulting in the estimated glottal pulses not displaying a

clear closed phase. This would have negatively affected the performance of both the

DyProg-LF and Strik-LF algorithms. The method Degott-LF produces significantly lower

(p < 0.001) OQ errors than the Strik-LF method for both BDL and SLT databases.

5.5.2 Qualitative evaluation

The OQ contours extracted using the manual method and using the DyProg-LF and the

Strik-LF automatic algorithms are shown, along with the corresponding f0 contours, for
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Figure 5.8: Distributions of relative error scores for Rd as a function of the five different
means of deriving Rd values. Prop indicates proposed parameterisation method (DyProg-
LF) with Strik indicating the standard time domain method. IAIF stands for automatic
iterative adaptive inverse filtering with Man IF being the manual inverse filtering method.
Degott-LF indicates parameter estimation using the phase minimisation method.

falling intonation in Figures 5.10 - 5.11 and for rising intonation in Figures 5.12 - 5.13.

Both figures have four separate panels for each of the four focused syllables and each

panel is segmented with dashed lines and phonetic transcriptions are shown at the bottom

of each panel. In Nı́ Chasaide et al. (2011) the glottal source data indicated a tenser

phonation in focused syllables, and as low OQ values also point to this, the minimum

value in each contour is highlighted with a star. Also, a summary of the size of the error

values on OQ for the two automatic methods compared to references values is given in

Table 5.3.

It can be seen in Figure 5.10, panels (a) and (b), that the minimum OQ value for the

time-domain based method does not fall on the focused syllable, whereas minimum OQ

values from the manual and proposed methods both fall on the focused syllable. When
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Table 5.1: Summary of the results from the statistical analysis involving linear mixed
effects modelling and subsequent p-value estimation using Monte Carlo Markov Chain
sampling. Results shown are t and pMCMC values for Rd.

Parameter Effects t-value pmcmc value

Rd Method -1.839 0.071

Table 5.2: Summary of the results from the statistical analysis involving linear mixed
effects modelling and subsequent p-value estimation using Monte Carlo Markov Chain
sampling. Results shown are t and pMCMC values for the three R-parameters considering
each of the fixed effects individually as well as the interaction of the two.

Parameter Effects t-value pmcmc value

Rg
Parameterisation 7.521 0.0001

. Inverse filtering 0.173 0.8734
Interaction -2.783 0.0066

Rk
Parameterisation 5.696 0.0001

. Inverse filtering -1.016 0.3216
Interaction -2.337 0.0204

Ra
Parameterisation 2.579 0.0094

. Inverse filtering -5.820 0.0001
Interaction 3.470 0.0002
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Figure 5.9: Distributions of absolute error (%) for OQ values derived using the three
parameterisation methods compared to reference OQ values measured from simultaneous
EGG signals, for the SLT (left panel) and BDL (right panel) ARCTIC databases.
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Table 5.3: Mean (x̄) and standard deviation (σ) of the absolute error score on OQ com-
pared with the references values for the proposed method (DyProg-LF) and the method
by Strik. Values are given for all four focused syllable conditions in both falling and rising
intonation patterns.

PROPOSED STRIK
Intonation Focused

x̄ (%) σ (%) x̄ (%) σ (%)
patterns syllable

Falling

WE 2.5 2.3 3.6 2.3
WERE 3.1 2.9 3.5 2.8
-WAY 1.7 1.2 4.0 8.8
YEAR 2.3 1.4 2.6 2.0

Rising

WE 4.4 4.2 9.2 10.0
WERE 2.9 2.9 4.4 7.1
-WAY 2.6 2.1 6.5 5.7
YEAR 3.6 2.9 12.6 13.2

-WAY is the focused syllable (panel c) all three methods display minimum OQ values on

the focused syllable. When -YEAR is focused, however, the two automatic algorithms

both produce minimum OQ values after the minimum value from the manual method.

Considering the error scores for the two methods in Table 5.3 one can observe a slight

improvement for the DyProg-LF method.

For rising intonation patterns (shown in Figure 5.12), however, OQ contours for the

standard time-domain based method (Strik-LF) are considerably more erratic, particularly

for the focused syllables WE (panel a) and YEAR (panel d). The OQ contour from the

proposed method (DyProg-LF) generally follows the reference OQ values more closely.

When WERE (panel b) and -WAY (panel c) are in focus all three methods produce a

minimum OQ value on the focused syllable. However, for the focused WE (panel a) only

the reference values and the DyProg-LF method follow this trend. For the utterance where

YEAR is the focused syllable (panel d) both the reference method and the time domain

method both have minimum OQ values that fall on /we/. The minimum OQ value for

the DyProg-LF method actually falls on the focused syllable. It can be observed that the

reference OQ values also dip to relatively low values here, whereas the time domain OQ

values rise around this time location.
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Figure 5.10: OQ contours for the reference manual method (blue), the proposed method
(red) and the time domain based method (black), on utterances with falling intonation
and narrow focus on the syllable we (a) and were (b), with corresponding f0 contours,
panels c and d, respectively. The whole sentence was We were away a year ago read by a
male speaker. Parameter contours are smoothed with a 5-point moving average filter.



5. LF-based parameterisation 106

gwi w e er we e ji er o

(a) -WAY (OQ)

wi we ji g ow e er ere

(b) YEAR (OQ)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

60

80

100

120

140

160

Time (seconds)

F
0 

(H
z)

(c) -WAY (f0)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

60

80

100

120

140

160

Time (seconds)

F
0 

(H
z)

(d) YEAR (f0)

Figure 5.11: OQ contours for the reference manual method (blue), the proposed method
(red) and the time domain based method (black), on utterances with falling intonation
and narrow focus on the syllable way (a) and year (b), with corresponding f0 contours,
panels c and d, respectively. The whole sentence was We were away a year ago read by a
male speaker. Parameter contours are smoothed with a 5-point moving average filter.
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Figure 5.12: OQ contours for the reference manual method (blue), the proposed method
(red) and the time domain based method (black), on utterances with rising intonation
and narrow focus on the syllable we (a) and were (b), with corresponding f0 contours,
panels c and d, respectively. The whole sentence was We were away a year ago read by a
male speaker. Parameter contours are smoothed with a 5-point moving average filter.
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Figure 5.13: OQ contours for the reference manual method (blue), the proposed method
(red) and the time domain based method (black), on utterances with rising intonation
and narrow focus on the syllable we (a), were (b), -way (c) and year (d). The whole
sentence was We were away a year ago read by a male speaker and phonetic transcription
is shown at the bottom of each panel. Parameter contours are smoothed with a 5-point
moving average filter.
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5.6 Discussion

The objective evaluation in this chapter revealed parameter values for the proposed method,

called DyProg-LF, to be clearly closer to the references values compared to those for the

standard time-domain based method (Strik-LF, Strik, 1998) for the parameters Ra, Rk

and Rg. This is likely due to inconsistencies in determining the point of glottal opening,

to, using the standard method (Alku et al., 2002). A combination of the exhaustive search

and the dynamic programming components appear to be more suited to handling this

problem. Previous application of this dynamic programming algorithm in f0 and formant

tracking (Talkin, 1995), as well as for GCI detection (Chapter 4), has already shown this

approach to be useful for obtaining smooth parameter contours.

For Rd, however, the difference between the algorithms is less clear. This is likely due

to the Strik-LF algorithm fitting to the amplitude of glottal source pulses consistently even

if there is inconsistency in the marking of to. It is, hence, highlighted here that focusing

on Rd alone would not provide this distinction.

Analysis of the larger corpora served to demonstrate the usefulness of the proposed

method for carrying out large-scale glottal source modelling. The OQ parameter here

demonstrates the inconsistency of Strik-LF for this purpose. The more recent, phase

minimisation approach (Degottex et al., 2011b) is clearly more robust for this type of

analysis. Although the proposed method produced lower errors in OQ estimation, this

finding must be treated as tentative, given that the phase minimisation approach does not

directly output OQ values and a prediction of OQ values from previous regression analysis

(Fant et al., 1995) needed to be applied to allow comparison.

A further interesting finding from the quantitative evaluation was that for the Rg and

Rk, parameters extracted using the DyProg-LF method automatic inverse filtering gave

very similar error scores compared to manual inverse filtering. This, however, was not

the case for the standard parameterisation method which produced higher errors when

automatic inverse filtering was used. For the Ra parameter, inverse filtering type clearly

had a big impact on the error scores for the proposed method. This is not surprising

as one would expect the higher end of the spectrum to be relatively more sensitive to

different inverse filter settings. This finding suggests that a combination of the IAIF

inverse filtering (Alku, 1992) with the DyProg-LF method may provide a fully automatic

way for extracting reliable open phase glottal source characteristics for male speakers.

The qualitative evaluation demonstrated that for the one male speaker dataset that the

DyProg-LF method produces OQ contours that are very similar to those obtained using

the manual fine-tuning approach. The findings of glottal source parameters pointing to a
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tenser voice quality in focused syllables in a previous study (Nı́ Chasaide et al., 2011) would

also have been arrived at if the DyProg-LF method had been used for parameterisation.

The standard parameterisation method, however, did not corroborate these results as

closely.

Although the qualitative evaluation only looked at one speaker, the results in com-

bination with those from the objective evaluation support the notion that the proposed

method could be used to help alleviate the workload of the manual fine-tuning approach,

yet still maintain the precision. Much of the research attention in terms of the development

of automatic glottal source analysis tools has focused on the inverse filtering component

(e.g., Alku, 1992; Alku et al., 2009). However, it is quite clear from the present study

that the parameterisation method used is also crucial in determining characteristics of the

glottal source.

In terms of the proposed algorithm itself it was found that the combination of the

exhaustive search and dynamic programming components provided a strong estimation of

the open-phase parameters (i.e. Rg and Rk). As a result the subsequent optimisation

component typically involved only a slight modification to these parameters. However, for

Ra the optimisation component often involved a considerable change to the Ra setting,

predicted from the Rd value (using the results of the regression analysis in Fant et al.,

1995). As the prediction of the open-phase parameters was more robust, this suggests

that refinements may be required to the prediction method for Ra. Furthermore, as the

regression analysis carried out in Fant et al. (1995) was on a limited number of speakers,

it may be that certain speakers deviate to a greater or lesser extent from this prediction

model, particularly with respect to Ra. Furthermore, the second figure in Fant et al.

(1994) shows some instances which deviate quite substantially from the regression-based

prediction used. A future study, involving a range of speakers and with substantial varia-

tion in voice quality would be very beneficial for examining and improving the robustness

of regression prediction using Rd described in Fant et al. (1995).

Another point on Ra is that it can be rather difficult to get an optimal fit to the re-

turn phase by only considering time domain information. Variation in Ra can bring rather

small changes to the return phase in the time domain, but can have a rather profound

effect on the spectral tilt in the frequency domain. The inclusion of frequency domain

measurements in the error criterion used in DyProg-LF may help provide simultaneously

better modelling of both the return phase and the higher frequencies in the glottal source

derivative spectrum. At the same time, however, resolving open phase glottal source pa-

rameters solely from frequency domain measurements can be problematic (Henrich et al.,

2001; Doval et al., 2006; Vincent, 2007; Degottex et al., 2011b). In particular, the com-
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bined effect of Rg and Rk (and similarly OQ and the asymmetry parameter, αm) have a

complex effect on the lower end of glottal source spectrum, making it extremely difficult

to derive the two separately from spectral measurements. Both these observations may

have contributed to the weighting of the frequency domain error criterion (i.e. 0.6) being

lower than the time domain error weighting (i.e. 1). Although the weighting is lower, it

is still found to have an important contribution.

Findings from the first part of the objective evaluation must still be considered tenta-

tive considering that there was only a limited number of speakers analysed in and that the

utterances produced were restricted to a particular set. Nevertheless, the present author

believes that this aspect of the evaluation presented provides a stronger test of parame-

terisation performance compared with analysis of purely synthetic signals (e.g., in Strik

et al., 1993; Strik, 1998). Although this dataset may on first inspection appear to be rather

limited, the fact that each glottal pulse was manually analysed (both for inverse filtering

and parameterisation) means that a considerable amount of effort was applied in order

to have a reliable test set. To the best of the author’s knowledge a dataset of this type

and size has not been used previously for evaluating glottal source analysis techniques.

Furthermore, these results were supported by analysis of larger datasets with less carefully

controlled reference values.

It is rather difficult to determine the impact of the size of the errors observed for the

various parameters. To assess this one would need to carry out analysis with specific ap-

plications, e.g., voice quality discrimination, parametric speech synthesis (such analysis is

carried out in Chapter 6). Nevertheless, the qualitative evaluation provided some prelim-

inary evidence that for the linguistic application of analysing glottal source parameters in

various placements of focus, the proposed parameterisation technique was indeed suitable.

5.7 Conclusion

This chapter presents a new method (DyProg-LF) for automatic differentiated glottal

source parameterisation which attempts to simulate some of the optimisation strategies

used when the parameterisation is carried out manually and is guided by both time and

frequency domain information. Results show that glottal source parameter data produced

by this method were more similar to the reference data than those of the standard time-

domain based method on a limited dataset of carefully controlled data. Furthermore,

analysis of larger corpora supported the usefulness of the new method as it was also

shown to estimate parameter values closer to the reference values than both the time-

domain method and a phase minimisation based method. As a next step, it is intended to
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apply a similar approach in the development of more robust automatic inverse filtering.

5.8 Applications

The proposed glottal source parameterisation method described in this chapter has strong

potential for alleviating the workload of manual parameterisation approaches while still

maintaining high precision. Consequently this method has been incorporated into the

software (see Figure 5.1) used at the Phonetics and Speech Laboratory for glottal source

analysis. The method may also be useful for including glottal source characterisation in

statistical parametric speech synthesis and voice modification methods. Future research

will involve exploiting this parameterisation method, in combination with the SE-VQ GCI

detection method, for these very purposes.
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Chapter 6

Evaluation of automatic glottal

source analysis methods

Summary

This chapter documents a comprehensive evaluation carried out on automatic glottal in-

verse filtering and glottal source parameterisation methods. The experiments consist of

analysis of a wide variety of synthetic vowels, of the ability of derived parameters to dif-

ferentiate breathy to tense voice and a subjective evaluation of the perceptual quality

of resynthesised utterances. One striking finding is that glottal model-based parameters

compared favourably to parameters measured directly from the glottal source signal, in

terms of separation of breathy to tense voice. Also, certain combinations of inverse filtering

and parameterisation methods were more robust than others. For instance, closed-phase

inverse filtering was shown to be effective for obtaining time domain based parameters,

but considerably less so for the frequency domain parameter. Further results suggest that

a recently proposed algorithm for fitting a glottal source model, when used for resynthesis,

provided a more comparable quality to the original utterance than a standard method.

114
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6.1 Introduction

The production of voiced speech can be considered as: the sound source created by the

vibration of the vocal folds (glottal source) inputted through the resonance structure of

the vocal tract and radiated at the lips. Most acoustic descriptions typically used in speech

processing involve characterisation of mainly the vocal tract contribution to the speech

signal. However, there is increasing evidence that development of independent feature sets

for both the vocal tract and the glottal source components can yield a more comprehensive

description of the speech signal.

Recent developments in speech synthesis (Cabral et al., 2011b; Degottex et al., 2012),

voice quality modification (Vincent et al., 2005; Degottex et al., 2011a; O’ Cinnéide et al.,

2011), voice pathology detection (Drugman et al., 2009b) and analysis of emotion in speech

(Lugger and Yang, 2007; Yanushevskaya et al., 2009; Lliev et al., 2010; Tahon et al., 2012)

have served to highlight the potential of features related to the glottal source.

However, approaches for analysing the glottal source are at times believed to lack

robustness in certain cases. For instance, higher pitch voices are known to be problematic

for inverse filtering (Walker and Murphy, 2007) and particularly when combined with a

low first formant frequency. This can result in strong source-filter interaction effects (Lin,

1990, 1987) which seriously affect the linear model of speech exploited in inverse filtering.

Furthermore, precise glottal source analysis is often said to require the use of high-quality

equipment to capture speech recorded in anechoic or studio settings (Walker and Murphy,

2007). Despite these claims, some studies have found that glottal source parameters

derived from speech recorded in less than ideal recording conditions to contribute positively

to certain analyses (Campbell and Mokhtari, 2003; Scherer et al., 2012b; Székely et al.,

2012b).

It follows that the purpose of this chapter is to investigate performance of both inverse

filtering and parameterisation steps, typically used in glottal source analysis. The evalu-

ation of glottal source analysis methods is known to be problematic as it is not possible

to obtain ‘true’ reference values. To deal with this, the current study presents a range of

evaluation procedures in order to provide a more thorough impression of the performance

of the various methods. Some similar work was recently carried out in Drugman et al.

(2011) and the current study builds on this by incorporating model fitting methods and a

subjective evaluation, involving copy-synthesis of recorded utterances.
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6.2 State-of-the-art

A description of the state-of-the-art in terms of automatic glottal inverse filtering and

glottal source parameterisation methods was previously given in Chapter 2, Section 2.3.

For a more detailed review the reader can refer to Alku (2011) or Walker and Murphy

(2007).

For the evaluation in the present chapter the glottal inverse filtering methods are eval-

uated: a closed-phase inverse filtering method (CPIF), iterative and adaptive inverse fil-

tering (IAIF, Alku, 1992) and mixed-phase decomposition based on the complex-cepstrum

(CCEPS, Drugman et al., 2009a). See Chapter 2, Section 2.3.1 for a description of these

methods. Note that for these methods glottal closure instants (GCIs) are detected using

the SE-VQ algorithm (Chapter 4). For the CPIF method GOIs are detected using the

algorithm described in Drugman et al. (2012c).

The glottal source parameterisation methods are divided into two groups: direct mea-

sures and model fitting. The direct measures used in the current study are: the normalised

amplitude quotient (NAQ, Alku et al., 2002), the quasi-open quotient (QOQ, Hacki, 1989)

and the difference between the first two harmonics of the narrowband glottal source deriva-

tive spectrum (H1-H2). These three parameters were chosen as they were shown to be

particularly effective at discriminating breathy to tense voice in a previous study (Airas

and Alku, 2007) and are described in Chapter 2, Section 2.3.3.

Three algorithms are included which involve fitting LF model pulses to the glottal

source derivative. A standard time domain method is used (Strik-LF, Strik, 1998), an

amplitude based method (Amp-LF; see Chapter 2, Section 2.3.3) which exploits the equa-

tions developed in (Gobl and Nı́ Chasaide, 2003a) and an algorithm based on dynamic

programming (DyProg-LF) described in Chapter 5.

One further algorithm is used in the evaluation which provides an estimate of the

Rd parameter of the LF model by minimising a phase-based error criterion (Degott-LF,

Degottex et al., 2011b). Again this method was previously described in Chapter 2, Section

2.3.3.

6.3 Experimental setup

The evaluation of glottal inverse filtering and glottal source parameterisation is problem-

atic as neither source nor filter are directly observable and, hence, objective reference

values cannot be obtained. Different evaluation methods have been proposed in the lit-

erature but each have their own shortcomings. The approach in this chapter is to carry
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out a range of objective and subjective evaluation experiments in order to provide a more

comprehensive impression of performance.

6.3.1 Synthetic testing

A frequently used evaluation procedure (see e.g., Strik, 1998; Sturmel et al., 2007; Drug-

man et al., 2011) is to do analysis of synthetic vowel segments where there are known

reference values. This has the advantage of allowing straightforward quantitative evalu-

ation where specific modifications to both vocal tract and glottal source model settings

can be investigated. The disadvantage, however, is that the stimuli will be a simplified

version of real speech and will not contain some of the known difficulties for glottal source

analysis (e.g., the presence of aspiration noise, source-filter interaction effects, etc.).

In this chapter, analysis was carried out on a large range of synthetic vowel segments

with wide variation of glottal source and vocal tract filter model settings. This was done in

a similar fashion to that in Drugman et al. (2011). The range of variations is summarised

in Table 6.1. The LF model was used to generate the synthetic source signal and was

varied using the parameters f0, Ra, Rk and Rg. With each setting 10 LF pulses were

concatenated to create the source signal. An all-pole vocal tract model was used to

modulate the source signal. Eight vowel settings were used based on the analysis of Finnish

vowels (see Section 6.3.2) said by a single male speaker. The vowels were manually analysed

using the procedure described in Section 2.3.5 and the derived formant frequencies and

bandwidths were used as the vocal tract filter settings. In total 198,720 synthetic signals

were generated for analysis. A small proportion of these variations resulted in improper

LF model configurations 1. These signals were discarded from the evaluation.

Table 6.1: Summary of glottal source and vocal tract parameter variations used in the
synthetic signal testing.

VOICE SOURCE VOCAL TRACT FILTER
f0 (Hz) Ra Rk Rg Vowel

Max 300 0.15 0.5 2.0
9 Vowels settingsMin 80 0.01 0.1 0.6

Step 10 0.02 0.05 0.1

In order to evaluate the performance of automatic inverse filtering the following three

parameters were considered: NAQ, QOQ and H1-H2. These parameters were calculated

1This occurred when Rk > 2Rg − 1 or when Ra > 1− 1+Rk
2Rg
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from the synthetic source signal, as reference values. Then for each synthetic vowel the

three inverse filtering methods: CPIF, IAIF and CCEPS, were used to estimate the source

signal. From the outputted signal of these three algorithms the three glottal source param-

eters were then calculated. Relative errors scores were then computed for each parameter

and then were analysed as a function of f0 values and first formant frequency (F1, derived

from the all-pole settings).

6.3.2 Voice quality differentiation

One useful application of glottal source analysis is to automatically differentiate voice

qualities. Furthermore, as NAQ, QOQ, and H1-H2 have been shown to be suitable for

separating breathy to tense voice (see for example: Airas and Alku, 2007; Alku et al.,

2002; Hacki, 1989; Hanson, 1997) it seems reasonable to assume that quality of inverse

filtering can be somewhat evaluated on the basis of how well the extracted glottal source

parameter differentiates the voice quality. Such an approach has been used in previous

studies (Kane et al., 2010; Drugman et al., 2011) and has the advantage of allowing

quantitative evaluation on natural speech. However, the particular glottal source estimate

is not directly evaluated and the application of extracted parameter values to voice quality

differentiation is one step removed from the glottal source analysis itself.

The speech data used in this stage of the evaluation contained both steady vowels and

continuous speech. For the vowel dataset recordings from 6 female and 5 male speakers

aged between 18 and 48 years were used (also used in a previous study by Airas and Alku,

2007). The speakers were originally asked to produce eight Finnish vowels /A e i o u y æ

ø/ using breathy, normal and pressed phonation types. Participants received training in

producing the voice qualities before recording. While conducting the recording, speakers

were asked to repeat the utterance with stronger emphasis on the voice quality when it

was necessary. Each utterance was repeated three times resulting in 792 speech segments.

Audio was captured using high quality recording equipment (a unidirectional Sennheiser

electret microphone with a preamp, LD MPA10e Dual Channel Microphone Preamplifier).

In order to ensure there were three independent sets of voice qualities and to resolve the

potential ambiguity of the ‘normal’ voice quality label 2 perceptual screening was carried

out on the vowel data. Three annotators, all experienced in voice quality research and

familiar with Laver’s labelling scheme (Laver, 1980), were randomly presented with vowel

utterances using a web interface. Annotators were asked to label utterances on a five point

Likert scale (i.e. breathy, breathy/modal, modal, modal/tense and tense). The scale gave

2A person’s ‘normal’ voice quality could, for example, be inherently breathy.
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the option of choosing breathy/modal and modal/tense as well as the three individual

labels. This allowed annotators to indicate their uncertainty over the voice quality label

if elements of two voice qualities were perceived. Analysis of the ratings showed an inter-

rater agreement of κ = 0.526 (which indicates moderate agreement). In order to have

three sets of independent voice qualities some thresholds were set to determine whether

each utterance was to be included for the analysis. If the mean rating for the given sample

was more than 0.75 (in numerical scores) away from its original voice quality label then the

utterance was excluded. Vowels were also excluded if the standard deviation of its rating

was more than 1, as this demonstrated disagreement on the part of the participants on

the labeling to be used. This resulted in 314 of the 792 total samples being excluded, with

478 included for analysis. The reduced set of vowels displayed a considerably increased

inter-rater agreement of κ = 0.717.

For each included vowel segment automatic inverse filtering was carried out using

CPIF, IAIF and CCEPS, and parameterised using NAQ, QOQ and H1-H2. Furthermore,

Rd and OQ parameters were derived from the model fitting by the Strik-LF, Amp-LF

and DyProg-LF methods. Only the IAIF inverse filtering was used for this. Rd was

also derived using Degott-LF, which does not require prior inverse filtering. Median

parameter values were recorded for each utterance and the distributions of these values

were examined as a function of the voice quality labels (i.e., breathy, modal and tense).

An explained variance metric was then derived as the squared Pearson’s R coefficient by

treating median parameter values as the dependent variable and voice quality label as the

independent variable. A similar evaluation procedure was carried out in Airas and Alku

(2007).

For the sentence dataset all-voiced spoken sentences from two separate databases

were compiled. The use of all-voiced sentences allowed evaluation independent of the

effects of using automatic voicing decision algorithms. Furthermore, as voicing transitions

often display characteristics associated with laxer phonation this would affect the results.

The first set of sentences came from the read-VQ recordings, described in Chapter 4. The

speech data from 6 speakers (3 male and 3 female) was selected from the database. Only

the sentences produced with breathy, modal or tense voice were used in the present chapter

and of these only the five sentences (from each voice quality set) which were all-voiced

were included. Note that the perceptual screening used in Chapter 4 also applies here,

and any sentences not meeting the criteria were also excluded here. In total 30 breathy,

30 modal and 20 tense voice sentences were included for analysis.

breathy, modal, tense, harsh, falsetto, creaky or other (only breathy, modal and tense

were used for the current study). They were also asked to state whether they believed the
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Table 6.2: Summary of speech data used in the voice quality discrimination experiments.
Note that this speech data is also used for the experiments in Chapter 7

Speech type Speakers Male Female Utterances

Vowels 11 5 6 478
Sentences 6 3 3 80
Sentences 3 3 0 90

Total 20 11 9 648

chosen voice quality was produced: for some, for most or throughout the utterance, and

whether they were: very confident, quite confident, or not confident that the label they

had chosen was suitable. For the present study I opted to use only those utterances which

were consistently given the ‘correct’ voice quality label, and where both annotators were

very confident and believed the voice quality was maintained throughout the utterance.

Further all-voiced sentences were included, again with the same recording conditions

as for the sentences above (described in Chapter 4, Section 4.5.1). 10 all-voiced sentences

produced by 3 male speakers, in breathy, modal and tense voice, were recorded and added

to the sentence dataset. The three male speakers were all experienced in voice-related

research and individual utterances were re-recorded in several iterations until the sentences

were deemed to properly represent the stated voice quality mode for the entire utterance.

A summary of the speech data used in the voice quality discrimination experiments is

given in Table 6.2.

Again NAQ, QOQ, H1-H2, Rd and OQ parameters were derived as per the vowel

dataset. This time, median values were not used as a parameter contour is more likely

to vary substantially in continuous speech. However, in order to have a balanced dataset

it is also desirable to have a fixed number of datapoints per sentence. To address this

parameter contours were derived using each of the methods. These contours were then

resampled to 10 samples which was deemed sufficient in order to capture any variations

that might exist in the parameter contour but still maintaining a constant number of

datapoints.

6.3.3 Perceptual testing

A final subjective evaluation was carried out involving glottal source and vocal tract

parameterisation, and subsequent resynthesis. By doing perceptual evaluation of resyn-

thesised utterances it is possible to evaluate the glottal source modelling as a whole, rather
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than focusing on individual parameters.

For this stage of the evaluation 10 all-voiced sentences produced by a single male

speaker from the sentence dataset was used. This speaker was chosen as he displayed a

clearly modal voice quality with no audible aspiration noise. This was important as the

glottal source model can only be used for characterising the deterministic component of

the glottal source. Although aspiration noise models have been proposed (see e.g., Gobl,

2006; Degottex et al., 2011a) the aim here was to focus on the timbre resulting from the

deterministic part of the glottal source.

Glottal inverse filtering and vocal tract modelling were carried out only using the IAIF

method. The reason for not using CPIF was that occasionally spurious GOI markings can

lead to a severe degradation in the quality of the resynthesis. Also, as the decomposition

using CCEPS does not allow separation of the entire glottal source (i.e. open phase and

return phase) from the vocal tract component, it did not allow easily comparable glottal

source modelling.

Estimated glottal source derivative signals were parameterised using the two model

fitting methods: Strik-LF and DyProg-LF. Parameter contours for the Strik-LF method

were smoothed using a five-point moving average filter to lessen the effect of sudden

changes in the model shape. Resynthesised utterances were generated by first creating a

synthetic glottal source derivative using the parameters derived for the particular method.

Voice source pulses were constructed and aligned to the corresponding GCI. Then the

synthesised speech was created by filtering GCI-centred two pulse length glottal source

derivative model frames with the corresponding all-pole filter. Successive frames were

combined using overlap-and-add. Note that the same vocal tract filtering was applied for

both methods.

Perceptual evaluation was carried out in the form of a modified ABX style design using

a web application. 14 participants were first presented with the original utterance as a

reference. They then listened to two resynthesised utterances and had to choose which

sounded most like the original. This resulted in 10 ABX sets which the participants had

to rate. The utterance order and the order of the methods were both randomised for each

individual participant.
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6.4 Results

6.4.1 Synthetic testing

The results from the synthetic testing are shown in Figures 6.1 and 6.2. The NAQ parame-

ter was shown to be rather insensitive to variations in f0 (Figure 6.1 a). Below around 240

Hz the IAIF method produces the lowest relative error, however from after this point the

three inverse filtering methods yield similar results. Although these results corroborate

previous findings in Drugman et al. (2011) for the performance of NAQ on synthetic data.

Also in terms of F1, NAQ appears to be insensitive to its variation. Again IAIF appears

to provide the lowest relative error scores, although there is a sudden increase for the vowel

setting with an F1 of 344 Hz. This can be explained by the fact that this was a /u/ vowel

setting with a very low second formant. IAIF may at times have treated this as a single

formant resulting in incomplete formant cancellation which affected the NAQ calculation.

For QOQ, the closed-phase inverse filtering method (CPIF) provided the lowest relative

error scores. This was particularly true for higher f0 values, with both IAIF and CCEPS

showing significant increases in relative error from around 200 Hz. There was a clear affect

of certain vowel settings on IAIF and CCEPS, but they were not clearly as a result of F1.

CPIF was shown not to be affected by the different vowel settings.

In the case of H1-H2, however, CPIF gave clearly the highest relative error values. It

was apparent from the analysis that even though the extracted time domain waveform,

using CPIF, was suitable for deriving time domain parameters, it was considerably less

so for the frequency domain one. The CPIF method seemed unable to obtain the relative

amplitude of the first few harmonics.

6.4.2 Voice quality differentiation

The results from the voice quality differentiation experiments are shown in Figure 6.3 -

6.8 and Tables 6.3 - 6.6.

For the vowel dataset NAQ gave the best differentiation of the three voice qualities

when the differentiated glottal source was estimated using the IAIF method (R2 = 0.60).

This trend corroborates previous analysis with a similar version of the vowel dataset

(Airas and Alku, 2007). In fact in the present results the performance was even better

than was previously reported. NAQ derived from CPIF and CCEPS gave a lower level

of performance (R2 = 0.09 and 0.24, respectively). By considering Figure 6.3 it is clear

that this is largely due to a weaker separation of breathy and modal voice. For CPIF this

may be explained by the difficulty in deriving the glottal opening instant (GOI) used for
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Figure 6.1: Mean relative error score for NAQ (top row) and QOQ (bottom row) as a
function of f0 (left column) and F1 (right column), for the three inverse filtering methods:
CPIF (blue), IAIF (red) and CCEPS (black).

demarcation of the closed-phase. For CCEPS, which requires precise location and setting

of the window function used, errors in GCI locations may have affected the analysis of

breathy samples.

For H1-H2, the CCEPS decomposition was most suitable for allowing differentiation

of breathy, modal and tense voice (R2 = 0.55). Although IAIF provided weaker differen-

tiation of modal and tense voice, both CPIF and IAIF, however, still resulted in useful

H1-H2 values (R2 = 0.40 and 0.30, respectively). For the parameter QOQ, all three
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Figure 6.2: Mean relative error scores for H1-H2 as a function of f0 (left panel) and F1
(right panel), for the three inverse filtering methods: CPIF (blue), IAIF (red) and CCEPS
(black).

decomposition methods provided similar voice quality differentiation performance.

Table 6.3: Explained variance (Pearson R2) for each parameter and inverse filtering type
combination. The glottal source parameter is treated as the dependent variable and voice
quality label as the independent variable. Speech data comes from the vowel dataset.

CPIF IAIF CCEPS

NAQ 0.09 0.60 0.24
H1H2 0.40 0.30 0.55
QOQ 0.44 0.42 0.42

Considering the differentiation of voice quality in the vowel dataset for the LF model

fitting methods, theRd parameter gave similar performance compared with NAQ. This was

expected for Amp-LF (R2 = 0.65), as the open-phase setting is derived following amplitude

based measurements. However, Strik-LF and DyProg-LF gave Rd values (R2 = 0.62

and 0.59, respectively) which performed considerably better than was previously reported

(Airas and Alku, 2007). This difference is even more stark when considering OQ. It was

also observed that the LF model fitting algorithm proposed in Chapter 5 (DyProg-LF)

produced OQ values which differentiated voice quality (R2 = 0.56) better than the direct

measures QOQ and H1-H2. Rd derived using Degott-LF (see Figure 6.5) also provided
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Figure 6.3: Distributions of NAQ (top row), H1-H2 (middle row) and QOQ (bottom row),
for closed phase inverse filtering (left column), iterative adaptive inverse filtering (middle
column) and complex-cepstrum based decomposition (right column), plotted as a function
of voice quality. Speech data used is the vowel dataset.

very strong differentiation of breathy to tense voice (R2 = 0.62)

As expected, overall differentiation of voice quality was reduced when moving to the

combined sentence dataset. This is likely due to the difficulty in inverse filtering some

parts of continuous speech (e.g., certain voiced consonants). However, similar trends were

maintained with NAQ derived following IAIF giving the best performance (R2 = 0.22).

Once more CCEPS was the most suitable decomposition method for applying H1-H2 (R2 =

0.26). For QOQ, a serious degradation in performance was observed for all decomposition
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Table 6.4: Explained variance (Pearson R2) for each LF model-based parameter (i.e Rd
and OQ) and parameterisation type combination. The glottal source parameter is treated
as the dependent variable and voice quality label as the independent variable. Speech data
comes from the vowel dataset.

Strik-LF Amp-LF DyProg-LF Degott-LF

Rd 0.62 0.65 0.59 0.62
OQ 0.33 0.37 0.56

methods.

Table 6.5: Explained variance (Pearson R2) for each parameter and inverse filtering type
combination. The glottal source parameter is treated as the dependent variable and voice
quality label, from the combined sentence datasets, as the independent variable.

CPIF IAIF CCEPS

NAQ 0.06 0.28 0.10
H1H2 (dB) 0.06 0.22 0.26

QOQ 0.09 0.20 0.05

The degradation in performance was notably less for the model fitting methods. This

time the DyProg-LF method gave the best performing Rd values (R2 = 0.39). This was

also the case for OQ (R2 = 0.34) and in fact both Rd and OQ derived from DyProg-

LF provided considerably better voice quality differentiation than all the direct measure

parameters. Another interesting observation was that the traditional OQ method consis-

tently performed better than QOQ.

Table 6.6: Explained variance (Pearson R2) for each LF model-based parameter (i.e Rd
and OQ) and parameterisation type combination. The glottal source parameter is treated
as the dependent variable and voice quality label, from the combined sentence dataset,
as the independent variable.

Strik-LF Amp-LF DyProg-LF Degott-LF

Rd 0.21 0.26 0.39 0.28
OQ 0.24 0.20 0.34
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6.4.3 Perceptual testing

The results from the ABX-style perception test are shown in Figure 6.9. Participants sig-

nalled that synthesised utterances generated following the use of Dyprog-LF (83.6 % mean

preference) were clearly more similar to the original utterance than when Strik-LF (16.43

% mean preference) was used. Note that the only difference between the synthesised utter-

ances was the LF model shapes as derived using the two parameterisation methods. GCI

positions, and hence f0, and the vocal tract filtering were identical for the two methods.

Listening to the resynthesised utterances it is clear that despite the moving average filter

applied to the Strik-LF method, sudden changes in the glottal source settings degraded the

quality somewhat. Furthermore, resynthesised utterances using Strik-LF were informally

judged to be perceptually ‘duller’, suggesting inappropriate setting of the Ra parameter.

6.5 Discussion

Perhaps the most striking finding in this chapter was the strong performance of LF model

based parameters at differentiating breathy to tense voice. Whereas the standard time

domain LF model fitting algorithm (Strik-LF, Strik, 1998) gave comparable performance

to that in Airas and Alku (2007), more recent algorithms for deriving LF model parameters

(DyProg-LF, Kane et al., 2012 and Degott-LF, Degottex et al., 2011b) compared strongly

with direct measure parameters.

This was particularly the case for continuous speech, where direct measure parameters

suffered a serious degradation in performance. Specifically for DyProg-LF, both the Rd

and OQ parameters still provided strong differentiation of the voice quality in continuous

speech. The reason for the apparent robustness of the DyProg-LF method to continu-

ous speech can be explained by the suitability of dynamic programming for maintaining

sensible parameter contours even in difficult speech regions.

Although differentiation of voice quality does not directly measure the accuracy of

derived parameter values, strong performance does suggest that the particular method is

characterising salient glottal features.

Evidence from the testing on synthetic speech signals indicated that certain glottal

inverse filtering methods were more suited to certain parameters. For instance, closed-

phase inverse filtering (CPIF) was shown to be particularly suitable for deriving NAQ and

QOQ, both time domain parameters. These parameters derived following CPIF were also

rather insensitive to changes in f0 and vocal tract filter setting. However, for the frequency

domain parameter, H1-H2, the CPIF output was clearly less suitable. This finding may
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corroborate those in Drugman et al. (2011) where CPIF was shown to produce higher

levels of spectral distortion than the other inverse filtering methods.

However, the findings for IAIF conflict with those in Drugman et al. (2011), as in the

present results IAIF had a similar performance to the other methods in terms of relative

error on NAQ and QOQ, whereas in Drugman et al. (2011) it was considerably worse. In

fact IAIF displayed relatively stable performance across the experiments and was shown

to be particularly useful in combination with NAQ for breathy-tense discrimination and

accuracy on synthetic speech signals.

Finally, results from the perceptual experiment with resynthesised utterances showed

evidence that the recent parameterisation method, DyProg-LF, provided better modelling

of the glottal source derivative than the Strik-LF method. The improvements are likely to

have been brought about both by smoother parameter contours as well as better modelling

of the higher frequencies. For this experiment an all-pole model was used for the vocal

tract component for both methods as this facilitated focusing the participants on the effect

of the glottal source modelling.
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Figure 6.4: Distributions of Rd (top row) and OQ (bottom row) derived from the LF
model fit, using the Strik-LF (left column), Amp-LF (middle column) and DyProg-LF
(right column) algorithms and applied to the output of the IAIF method. Distributions
are plotted as a function of voice quality label. Speech data used is the vowel dataset.
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(right column) algorithms and applied to the output of the IAIF method. Distributions are
plotted as a function of voice quality label. Speech data used is the combined sentence
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For practical purposes it would be useful to remove the glottal source model from

the speech signal (for instance using the glottal source separation method; Cabral et al.,

2008), and characterise the resulting signal with a more sophisticated spectral envelope,

e.g., STRAIGHT (Kawahara, 1997) or the True-Envelope (Villavicencio et al., 2006). A

minimum-phase spectral envelope, like the True-Envelope and unlike the all-pole model,

could characterise zeros occurring in the vocal tract filter, as occur in nasals. A similar

approach to this has been used in parametric synthesis (Cabral et al., 2011b) and voice

modification (Degottex et al., 2011a) using the LF model for generating the glottal source

signal.

6.6 Conclusion

This chapter presents a general assessment of automatic glottal inverse filtering and glottal

source parameterisation methods. To overcome the known difficulty of quantitative eval-

uation of glottal source analysis methods a range of different experiments were conducted

which, in combination, provide a more comprehensive impression of the performance of

the methods. Testing on synthetic signals revealed that different glottal inverse filtering

methods were more suited to certain parameter estimation methods. The experiments

on voice quality differentiation showed that more recent LF model fitting methods were

as useful as direct measures for the vowel data and even more suited to the continu-

ous speech data. Finally, the perceptual experiment revealed the recent parameterisation

method DyProg-LF to be particularly suited modelling the glottal source. Resynthesised

utterances were judged to be perceptually closer to the original utterance than a standard

LF model fitting method.
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Chapter 7

Wavelet maxima dispersion for

breathy to tense voice discrimination

Summary

This chapter proposes a new parameter, the Maxima Dispersion Quotient (MDQ), for

differentiating breathy to tense voice. Maxima derived following wavelet decomposition

are often used for detecting edges in image processing, where locations of these maxima

organise in the vicinity of the edge location. Similarly for tense voice, which typically dis-

plays sharp glottal closing characteristics, maxima following wavelet analysis are organised

in the vicinity of the glottal closure instant (GCI). Contrastingly, as the phonation type

tends away from tense voice towards a breathier phonation it is observed that the maxima

become increasingly dispersed. The MDQ parameter is designed to quantify the extent of

this dispersion and is shown to compare favourably to existing voice quality parameters,

particularly for the analysis of continuous speech. Also, classification experiments revealed

a significant improvement in the detection of the voice qualities when MDQ was included

as an input to the classifier. Finally, MDQ is shown to be robust to additive noise down

to a Signal-to-Noise Ratio of 10 dB.

137
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7.1 Introduction

Voice quality can be considered as the timbre or auditory colouring of a person’s speech

(Laver, 1980). Breathy voice and tense voice, which are often considered to be opposite

ends of a voice quality continuum (Gobl and Nı́ Chasaide, 1992), are perhaps the most

studied aspects of voice quality for non-pathological speech. Breathy and tense voice, along

with other aspects of a speaker’s voice quality, are important features of paralinguistic

signaling in speech and can provide the listener with information pertaining to the speakers

affective state (Campbell and Mokhtari, 2003). For an illustration of this see Chapter 3,

Section 3.1.1.

In terms of speech processing, the importance of robust detection of breathy and tense

voice has been highlighted in Chapter 3, Section 3.2.

Many parameters have been proposed in the literature for discriminating breathy to

tense voice and these have been discussed previously in this thesis (see Chapter 2 and

Chapter 6). Further methods have been described for detecting breathiness from the

amount of aspiration noise present in the signal (Ishi et al., 2011; Ito, 2004). These

methods follow observations in Klatt and Klatt (1990), where the authors observed the

third formant region to be considerably noisier in breathy voice than modal voice samples.

This chapter proposes a new parameter for differentiating breathy to tense voice by

applying wavelet analysis for exploiting the different acoustic characteristics of these voice

qualities. The parameter is compared against state-of-the-art parameters and is com-

prehensively evaluated through three sets of experiments which consider the ability to

differentiate the three voice quality classes. The experiments are used to assess the ability

to classify these voice qualities with a classifier using multiple input features and also to

determine the robustness of the parameters to simulations of degraded conditions.

7.2 Proposed method

The proposed method for differentiating breathy to tense voice arises partly out of the

observations made in Tuan and d’Alessandro (199) and d’Alessandro and Sturmel (2011).

In these studies wavelet based zero-phase octave band filtering was carried out on the

inputted speech signal. So-called Lines of Maximum Amplitude (LoMA) were subsequently

derived which involved linking the maxima in the different outputted waveforms and this

was then used for determining glottal closure instants (GCIs, Naylor et al., 2007). The

LoMA have also shown to be useful for determining standard voice quality parameters such

as; the open quotient, amplitude of voicing and spectral tilt (d’Alessandro and Sturmel,
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2011).

In image processing, the maxima in signals outputted following wavelet-based filtering

are often used for detecting edges (i.e. a contour in an image across which the brightness

changes suddenly; Mallet, 1999). In fact wavelet analysis is in general suited to the

detection of singularities in signals and indeed the characterisation of different types of

singularities (Mallet and Zhong, 1992). The proposed method looks to exploit the different

glottal closing characteristics of breathy, modal and tense voice by deriving a measurement

following wavelet analysis.

A dyadic (i.e. based on powers of two) wavelet transform is carried out based on

the method described in d’Alessandro and Sturmel (2011). A cosine-modulated Gaussian

pulse, m(t), similar to that applied in (d’Alessandro and Sturmel, 2011) was used as the

so-called mother wavelet:

m(t) = −cos(2πfnt) · exp
(
− t2

2τ 2

)
(7.1)

where the sampling frequency fs = 16 kHz, fn = fs
2

, τ = 1
2fn

and t is time. As the

main excitation in the glottal source pulse typically presents as a negative peak (assuming

positive polarity of the signal), the minus sign ensures that the filtering will produce

positive signal values corresponding to glottal closure. The wavelet transform, yi(t), of

the input signal, x(t), at the ith scale si is calculated by:

yi(t) = x(t) ∗m
(
t

si

)
(7.2)

where ∗ denotes the convolution operator. The term scale refers to different scaled versions

of the wavelet function, m, used in the convolution. Lower scales correspond to higher

frequencies and vice versa. Here i = 0,1,2,....,6 was used which results in an octave band

zero-phase filter bank, with filters having centre frequencies of: 8 kHz, 4 kHz, 2 kHz, 1

kHz, 500 Hz, 250 Hz and 125 Hz.

It is instructive to consider the output of this type of filtering on a negative Dirac

impulse, see Figure 7.1. The maxima of the filter responses at the different frequencies

are aligned as a result of the zero-phase filtering.

This observation is exploited in the proposed method by making the glottal excitation

in tense voice analogous to a negative Dirac pulse. Furthermore, it is considered that as

the phonation type tends away from tense voice and towards breathy voice that the glottal

excitation becomes less and less like an impulse and in fact more like a sinusoid. Such

an assumption is not unreasonable considering example tense and breathy settings of the
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Figure 7.1: Output of wavelet decomposition for a negative Dirac pulse. Outputted
signals are normalised in amplitude.

Liljencrants-Fant (LF, Fant et al., 1985a) differentiated glottal source model (Figure 7.2).

As was previously stated, in image processing when carrying out wavelet-based filtering

the maxima of the outputted signals typically organise in the close vicinity of the location

of the edge. This was also shown to be the case for a negative Dirac pulse (Figure 7.1).

To illustrate what happens for breathy and tense voice, a spoken vowel sample is taken

and the Linear Prediction (LP) residual is computed using autocorrelation LPC analysis

and inverse filtering. This has the effect of removing the main oscillations resulting from

formant resonance, while still maintaining the important phase properties of the glottal

excitation. If one carries out the described wavelet filtering (Eq. 7.2) method on the

breathy and tense residual signals and plot the maxima (i.e. any positive peaks) at the

different scales one gets the output shown in Figure 7.3. For the breathy vowel (top panel)

the maxima are extremely dispersed, whereas for the tense vowel (bottom panel) there is

clear clustering of the maxima at regular intervals. In fact these clusters are located in the

vicinity of the glottal closure instant (GCI). The proposed method involves quantifying

the extent of this dispersion and a more formal description of the method now follows.

First, GCIs are detected using the SE-VQ algorithm (see Chapter 4 and Kane and

Gobl, 2013). The LP-residual, rLP (n) (also used in SE-VQ), is decomposed using wavelet

analysis, and is derived following autocorrelation Linear Predictive Coding (LPC) and
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Figure 7.2: Example of an LF model pulse with tense (left panel) and breathy (right
panel) parameter settings.

subsequent inverse filtering. A prediction order of fs/1000 + 2 is used which corresponds

roughly to two coefficients to characterise each formant, for a typical male speaker, and

two further coefficients to characterise the glottal source contribution. rLP (n) is then

filtered using Eq. (7.2). Then for each GCI location a search interval, int, is defined as:

int = [GCI(k)− (T0 · c), GCI(k) + (T0 · c)] (7.3)

where k is GCI index and c is a constant which determines the size of the search region

relative to the glottal period, T0. Here c is set to 0.2 which allows maxima to be measured

in the vicinity of the GCI while generally avoiding measuring maxima arising from neigh-

bouring glottal pulses. The search interval is used to determine the location of maximum

amplitude, mi, in the vicinity of the GCI at each scale:

mi = arg max
yi

{yi(int)} for 0 ≤ i ≤ 6 (7.4)

and from this the distance from these maxima locations, di, to the GCI can be measured:

di = |GCI(k)−mi| for 0 ≤ i ≤ 6 (7.5)

Finally, the maxima dispersion quotient, MDQ, is then calculated using:

MDQ(k) =
1
I

∑I−1
i=0 di

T0(k)
(7.6)

where I is the number of scales and T0(k) is the local glottal period duration.
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Figure 7.3: Illustration of dispersion of maxima measured following wavelet based de-
composition of the LP-residual of a breathy vowel (top panel) and a tense vowel (bottom
panel).

Note that this method for deriving MDQ is carried out on a glottal pulse-synchronous

basis. For certain applications, however, one may wish to avoid GCI detection which

may negatively affect the robustness of the measurement. In such cases MDQ could

be calculated on a fixed frame-basis where the location of the maximum amplitude at

the highest scale (lowest frequency) could be substituted for the GCI location. di could

then be measured as distances from this point, and the denominator of Eq. (7.6) could

be substituted with a T0,mean value. The author has observed this approach to produce

broadly similar results to the standard MDQ calculation. However, it is the glottal pulse

synchronous approach which is used throughout this chapter.

Figure 7.4 provides an illustration of the MDQ contour for an /a/ vowel produced by a

male speaker beginning in a tense phonation and moving gradually to breathy voice. The

MDQ contour moves steadily from a low value, around 0.04, to a higher value, around

0.09, in the breathy part. It is interesting to note how the MDQ contour increases as the
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amplitude of the speech signal decreases. This is despite the calculation of MDQ being

independent of variation solely in signal amplitude.
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Figure 7.4: Speech waveform of an /a/ produced by a male speaker with the phona-
tion type varying gradually from tense to breathy. Also shown is the extracted Maxima
Dispersion Quotient (MDQ) contour.

7.2.1 Summary

The MDQ parameter measurement is summarised as follows:

1. Estimate GCIs using the SE-VQ algorithm (see Chapter 4 and Kane and Gobl, 2013)

2. Derive LP-residual signal, rLP , using LPC analysis of order fs/1000 + 2

3. Carry out wavelet decomposition of rLP using Eq. (7.2)

4. Define search interval relative to a given GCI location, Eq. (7.3)

5. Find locations of maxima, mi, at the different scales in this search region (Eq. 7.4)

6. Measure the distance, di, of the maxima locations, mi, to the given GCI location

(Eq. 7.5)

7. Compute the average of these distances normalised to the glottal period, Eq. (7.6)
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7.3 Experimental setup

This section describes the experimental setup, involving three sets of experiments, used

to evaluate the proposed parameter, MDQ.

7.3.1 Speech data

Note that the speech data used in the current study was selected in order to have datasets

with clearly discrete voice quality classes. Although larger corpora, such as that used

in Schroeder and Grice (2003), may be useful for the objective of evaluating the ability

of parameters at distinguishing similar voice quality classes to those considered here, the

objective in this study was to ensure that there was as little overlap as possible between

the voice quality labels.

The speech data used here are the same data that were used in Chapter 6, Section

6.3.2 and a summary of the data is shown in Table 6.2

7.3.2 Comparison parameters

As in Chapter 6, three parameters were used: the normalised amplitude quotient (NAQ,

Alku et al., 2002), the quasi-open quotient (QOQ, Hacki, 1989) and the difference between

the first two harmonics of the narrowband glottal source derivative spectrum (H1-H2), as

comparison. Again these were chosen as they were shown to be particularly effective at

discriminating breathy to tense voice in a previous study (Airas and Alku, 2007) and the

description of them is given in Chapter 2, Section 2.3.3.

7.3.3 Experiments

A description of the three sets of experiments carried out in the current study is now given.

Differentiation of breathy to tense voice

The first set of experiments involved examining the ability of individual parameters to

differentiate breathy to tense voice in the speech data. For the vowel dataset, each of

the parameters were calculated and then the mean of each parameter was saved as the

datapoint. For the dataset of sentences, however, parameter values are likely to vary

considerably more and taking a single mean value is unsuitable. To handle this, the

parameter contour was extracted for a given sentence and then resampled to 10 datapoints.
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This allowed the variation in the sentence to be captured while still maintaining a balanced

dataset.

The extent to which the individual parameters differentiate the three voice qualities is

then demonstrated by plotting the distribution of each parameter as a function of voice

quality and calculating Explained Variance. The metric Explained Variance is measured

by treating parameter values as the dependent variable and voice quality label as the

independent variable and calculating Pearon’s R2. This was done separately for the vowel

and sentence datasets. This is the same experimental setup as was used in Chapter 6.

Classification experiments

Next the aim was to evaluate the extent to which the proposed parameter, MDQ, brings

improvement to the classification of the three voice qualities. To do this Support Vector

Machines (SVMs) were used as the classifier utilising a Radial Basis Function (RBF)

kernel (Bishop, 2006). As there are three voice quality classes, a one-against-one multi-

class architecture was opted for. 10-fold cross-validation experiments were conducted,

where the dataset was randomly partitioned into 10 equal-sized sets. One fold was held

out to be used solely for testing with the remainder of the dataset used for training. This

was repeated for each of the 10 folds with classification error scores saved each time. These

experiments were carried out for 5 different feature vectors:

1. MFCCs + f0

2. MFCCs + f0 + VQ(-MDQ)

3. MFCCs + f0 + VQ

4. f0 + VQ(-MDQ)

5. f0 + VQ

where 13 mel-cepstral coefficients (MFCCs) were measured using 25 ms Hanning windowed

frames, with a 5 ms shift, VQ is the full set of voice quality parameters (i.e. {MDQ, NAQ,

QOQ, H1-H2}) and (-MDQ) indicates the VQ set with MDQ excluded. The corresponding

voice quality class (i.e. breathy, modal or tense voice) was used as the target class. To

examine the effect of the different feature vectors on the classification error, a one-way

ANOVA was carried out with classification error treated as the dependent variable and

feature vector type as the independent variable. Pairwise comparisons were computed

using Tukey’s Honestly Significant Difference (HSD) test.
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Note that the primary concern here is not with the overall classification accuracy but

rather the goal is to investigate whether the MDQ parameter can bring improvement to

the accuracy.

Robustness of parameters to degraded conditions

The final set of experiments aimed at investigating the robustness of the four parameters

to simulated degradations of the recorded speech signals. A similar cross-validation ex-

periment to that in Section 7.3.3 was carried out. However, this time the analysis was

conducted for each voice quality parameter separately (i.e. a one-dimensional feature vec-

tor each time). As previously, one of the 10 validation folds was held out and the classifier

was trained on the remaining data. But for this analysis, the testing (i.e. on the one held

out fold) was done on parameter values measured on the test set with noise added to the

speech signals. The analysis was again repeated for each validation fold. Experiments

were carried out adding white Gaussian noise and Babble noise (taken from Varga and

Steeneken, 1993) to the signals at Signal-to-Noise Ratios (SNR) varying from 80 dB (al-

most ‘clean’ speech) to 0 dB (heavily degraded). Results of the analysis were determined

separately for white noise and babble noise.

7.4 Results

7.4.1 Voice quality discrimination

The distributions of parameter values are plotted as a function of voice quality for the

vowel dataset in Figure 7.5 and for the sentence dataset in Figure 7.6. Explained variance

scores are also given for the two datasets in Table 7.1.

Table 7.1: Explained variance (Pearson R2) for each parameter. The parameter is treated
as the dependent variable and voice quality label, from the vowel and sentence datasets,
as the independent variable.

Dataset MDQ NAQ QOQ H1-H2

Vowel 0.59 0.60 0.42 0.30
Sentence 0.39 0.28 0.20 0.22

For the vowel dataset, MDQ (R2 = 0.59) and NAQ (R2 = 0.60) clearly provided

the best discrimination of the three voice qualities. For QOQ, breathy and modal voice
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Figure 7.5: Distributions of MDQ (top left), NAQ (top right), QOQ (bottom left) and
H1-H2 (bottom right) plotted as a function of voice quality for the vowel dataset.

were less clearly discriminated, while for H1-H2 the parameter failed to provide strong

separation of modal and tense voice. The relative difference between the three standard

parameters; NAQ, QOQ and H1-H2, in the current study corroborates previous findings

in Airas and Alku (2007) which used the same vowel dataset. However, in the present

study the three parameters produce clearly better discrimination than was reported in

Airas and Alku (2007). This may be explained by the extra perceptual screening carried

out on the dataset to ensure there were three separate voice quality classes (the reader

can refer back to Chapter 6, Section 6.3.2 for details on this perceptual screening).

When considering the sentence dataset there is, not surprisingly, a general reduction
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Figure 7.6: Distributions of MDQ (top left), NAQ (top right), QOQ (bottom left) and
H1-H2 (bottom right) plotted as a function of voice quality for the sentence dataset.

in the discrimination of the three voice quality classes. Here MDQ clearly provides the

best separation of the classes (R2 = 0.39). NAQ (R2 = 0.28) and QOQ (R2 = 0.20) in

particular show a dramatic degradation in performance, compared to the vowel dataset.

Although the perceived voice quality was very stable across these utterances, it is known

that the glottal source will nevertheless vary considerably in running speech (Gobl, 1988;

Yanushevskaya et al., 2010). This would naturally affect the stability of the parameter

values even if a fairly constant voice quality is perceived. Furthermore, running speech,

compared to steady vowels, is more likely to cause problems for glottal inverse filtering.

As the three comparison parameters are calculated following glottal inverse filtering this
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may have caused the reduction in performance for running speech.

7.4.2 Classification experiments

The results from the 10-fold cross-validation classification experiment are shown in terms

of mean and standard deviation of the classification error in Table 7.2 with a summary

of pairwise comparisons following Tukey’s HSD test shown in Table 7.3. The one-way

ANOVA revealed a significant effect of feature vector type on the classification error [F(4,45)

= 50.017, p < 0.001]. In Table 7.2 it can be seen that including all parameters (i.e.,

MFCCs, f0 and all VQ parameters, including MDQ) gave the lowest average classification

error (20.2 %). Note that this was significantly lower (p < 0.05) than for the same feature

vector just excluding MDQ. The confusion matrices shown in Table 7.4 show that this

improvement involved an even reduction in classification error for the three voice quality

classes. Furthermore, when excluding MFCCs, the feature vector including MDQ gave a

significantly lower classification error (p < 0.001) compare to when it was removed.

Table 7.2: Mean and standard deviation of classification error scores (in %) following 10-
fold cross validation experiments with different input feature vectors. Best performance is
highlighted in bold and * denotes significant difference (p < 0.05) between the lowest error
and the next lowest, following ANOVA and subsequent Tukey’s HSD posthoc testing.

10-fold cross validation
Input features Mean Error (%) Standard deviation (%)

MFCCs + f0 30.46 2.90
MFCCs + f0 + VQ(-MDQ) 25.20 3.96
MFCCs + f0 + VQ 20.20∗ 2.63
f0 + VQ(-MDQ) 40.76 3.37
f0 + VQ 31.25 4.06

Another interesting finding was that the inclusion of voice quality parameters brought

a significant improvement (p < 0.001) to the classification error when used in combination

with MFCCs and f0, compared to just MFCCs and f0 alone.

These are positive findings for the proposed parameter, indicating that further infor-

mation to do with breathy and tense voice is provided with MDQ, which is not captured

within the existing parameters. The overall classification accuracy may be improved by

including other voice quality parameters from the literature as inputs to the classifier.

Furthermore, a recent study demonstrated that by using a large voice quality feature set

and exploiting the disagreement on the part of the voice quality annotation, considerable
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Table 7.3: Summary of pairwise comparisons from Tukey’s HSD test, following a one-way
ANOVA with classification error from 10-fold cross validation experiment as the dependent
variable and input feature vector type as the independent variable. Significant pairwise
differences are shown with * (p < 0.05), ** (p < 0.01), *** (p < 0.001). Note that f0 was
also included in each of the feature vectors, however it has been omitted from the labels
here for conciseness.

MFCCs, VQ(-MDQ) MFCCs, VQ VQ(-MDQ) VQ

MFCCs * *** *** 0.98
MFCCs, VQ(-MDQ) * *** **
MFCCs, VQ *** ***
VQ(-MDQ) ***

Table 7.4: Confusion matrices (in %) following 10-fold cross validation experiments. The
left matrix shows the results when the input feature vector consisted of all parameters
with the exception of MDQ, whereas the right matrix shows results when MDQ is also
included. Best voice quality classification on the diagonal of the confusion matrices are
highlighted in bold.

All features - MDQ All features + MDQ
Breathy Modal Tense Breathy Modal Tense

Breathy 77.9 20.0 2.1 83.1 16.0 0.9
Modal 17.3 68.3 14.4 13.1 74.8 12.1
Tense 3.8 17.4 78.8 2.4 15.8 81.8

improvements can be made in terms of accurate detection of these voice qualities (Scherer

et al., 2012a).

7.4.3 Robustness testing

The effect of adding white and babble noise to the speech samples in the test set on the

classification accuracy of the 10-fold cross validation experiments with single-dimensional

input feature vector is shown in Figure 7.7.

The MDQ parameter achieved the highest classification accuracy in both white and

babble noise conditions down to a Signal-to-Noise Ratio (SNR) of 20 dB. At 10 dB SNR

the accuracy drops moderately for white (51 %) and babble noise (54 %). For the most

severe noise condition, i.e. 0 dB SNR, the accuracy drops severely down close to chance

levels (around 40 %). NAQ displays a similar trend, but with lower classification accuracy



7. Breathy to tense voice discrimination 151

0 10 20 30 40 50 60 70 80
30

35

40

45

50

55

60

SNR (dB)

M
ea

n 
cl

as
si

fic
at

io
n 

ac
cu

ra
cy

 (
%

)

 

 

MDQ NAQ QOQ H1−H2

0 10 20 30 40 50 60 70 80
30

35

40

45

50

55

60

SNR (dB)

M
ea

n 
cl

as
si

fic
at

io
n 

ac
cu

ra
cy

 (
%

)
Figure 7.7: Effect of adding white noise (left panel) and babble noise (right panel) at
varying Signal-to-Noise Ratios (SNR) on mean classification accuracy (%) in the 10-fold
cross validation experiment.

than MDQ above 10 dB SNR. QOQ and H1-H2 both produced generally lower accuracy

than MDQ and NAQ, except for 0 and 10 dB SNR in the white noise condition. For

babble noise, however, the accuracy is severely degraded at 0 dB SNR. This is likely due

to the more pronounced low frequency characteristic of babble noise, compared to white

noise, which affected the calculation of these parameters.

7.5 Discussion and conclusion

This study presents a new parameter, the maxima dispersion quotient (MDQ), for dis-

criminating breathy to tense voice. A comprehensive evaluation revealed that the new

parameter provides comparable differentiation of the voice quality classes for the vowel

dataset and clearly better differentiation for the dataset of running speech than the best

performing comparison parameter (i.e. NAQ). The three comparison parameters were all

calculated from the glottal source signal estimated by automatic inverse filtering (IAIF,

Alku, 1992). However, automatic glottal inverse filtering of running speech can be problem-

atic, particularly for certain voiced consonants. This may have affected the measurement

of these parameters and reduced their ability to discriminate the voice qualities. MDQ,

on the other hand, does not require glottal inverse filtering, but simply applies standard
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LPC inverse filtering to remove the effect of oscillations emanating from both the glottal

source contribution and from vocal tract resonance. This perhaps suggests that it is more

suited to the automatic analysis of running speech.

Results from the classification experiment clearly demonstrated that MDQ provides

further information for the discrimination of the three voice quality classes than is present

in the three comparison parameters as well as the full set of mel-cepstral coefficients.

While findings from the robustness testing suggested that MDQ can provide meaningful

information for the discrimination of breathy and tense voice down as far as 10 dB SNR.

7.6 Applications

The new parameter, MDQ, may prove to be extremely useful for the study of breathy and

tense voice occurring in speech data containing wide variation in expressiveness and voice

quality. Specifically, this could be used to improve methods for clustering speaking styles

in corpora for the purpose of building expressive speech synthesis systems (Székely et al.,

2011, 2012b; Braunschweiler and Buchholz, 2011). The parameter has potential for use in

discriminating speaking styles (Scherer et al., 2012b) and for studying and modelling the

use of voice quality in interactive speech.
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Chapter 8

Detection of creaky voice

Summary

This chapter describes a new algorithm for automatically detecting creaky voice in speech

signals. Detection is made by utilising two acoustic parameters which are designed to char-

acterise creaky excitations following previous evidence in the literature combined with new

insights from observations in the current work. In particular the new method focuses on

features in the Linear Prediction (LP) residual signal including the presence of secondary

peaks as well as prominent impulse-like excitation peaks. These parameters are used as

input features to a decision tree classifier for identifying creaky regions. The algorithm

was evaluated on a range of read and conversational speech databases and was shown to

clearly outperform the state-of-the-art. Further experiments involving degradations of the

speech signal demonstrated robustness to both white and babble noise, providing better

results than the state-of-the-art down to at least 20 dB signal to noise ratio.

154
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8.1 Introduction

Several recent studies in the literature have been devoted to the development of improved

methods for modelling aspects of the glottal source and excitation characteristics in speech

(e.g., Drugman et al., 2009a; Degottex et al., 2011b; Kane and Gobl, 2011). Many of

these aspects contribute significantly to the perception of voice quality. The focus of

this chapter is on one particular voice quality sometimes referred to as creaky voice.

Several voice quality labels such as glottal fry, vocal fry, laryngealisation or creak are often

used in the literature and are in the vicinity of each other in terms of their physiological

and acoustic characteristics. For the present chapter these labels are subsumed into one

voice quality class, creaky voice, which will be defined solely on the basis of the auditory

criterion: ‘a rough quality with the sensation of additional impulses’ (as is done in Ishi

et al., 2008b). This approach is justified as previous studies have demonstrated some of

these voice quality variations to be perceptually similar (Gerratt and Kreiman, 2001).

Laver (1980), however, makes the distinction between creak and creaky voice, stating that

creaky voice is a compound of creak and modal voice. This distinction is not made in the

present chapter and there is evidence to suggest that such a distinction is not utilised by

speakers for any linguistic or paralinguistic contrast (Ishi et al., 2008b; Laver, 1994).

Details of the physiology and the acoustics related to creaky voice are relevant to the

design of the parameters described in this chapter. The reader can refer to Chapter 2,

Section 2.1.2 for these details.

tract resonances have almost completely decayed before the start of the next pulse.

The distinctive acoustic characteristics of creaky voice can cause problems for standard

speech analysis methods (including f0 tracking and spectral analysis). The very low f0

values and, often, irregular temporal patterning may not be properly handled by standard

f0 tracking algorithms. Standard frame lengths (usually no longer than 32 ms) may be

too short to capture two glottal pulses and, hence, will be unsuitable for obtaining strong

periodicity information. Commonly used f0 trackers tend to either output spurious values

in creaky regions or consider creaky regions to be unvoiced. As a result of this, creaky

regions will be poorly modelled in most speech technology applications. This problem was

highlighted in a previous study (Silen et al., 2009) which involved the development of a

speech synthesis system for Finnish (a language in which creaky voice frequently occurs).

However, creaky voice is commonly produced for a range of interactive, expressive and

stylistic reasons. It has previously been studied in relation hesitations (Carlson et al.,

2006) and turn-taking (Ogden, 2001), as well in the context of various forms of expres-

sion and emotion (Yanushevskaya et al., 2005; Gobl and Nı́ Chasaide, 2003b; Ishi et al.,
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2008a). It has also been shown to frequently occur at phrase boundaries and utterance

final position in American English (Surana and Slifka, 2006b). If low subglottal pressure

is a necessary condition for creak, then it is not surprising that it frequently occurs in

phrase/utterance/turn-final position, where the speaker will have less air available than at

the start of the utterance. Creaky voice has also recently received attention from popular

science articles following the study in Wolk and Abdelli-Beruh (2012) which demonstrated

that two thirds of the young female American English speakers analysed, displayed creaky

voice at the end of read sentences. The authors state that continuous use of creaky voice

is likely to be more prevalent in more sociable, conversational speech settings (however

this was not formally investigated).

The study of creaky voice (and indeed voice quality in general) has been hindered

because of the lack of suitable automatic detection algorithms and, as a result, most

applied studies on creaky voice tend to either rely on qualitative interpretation or use

small amounts of data.

In terms of specific applications robust detection could be used to segment creaky

regions in corpora used for text-to-speech synthesis which would facilitate the use of more

appropriate acoustic modelling and, hence, better rendering of these regions (Drugman

et al., 2012b). This would be particularly important for expressive or conversational

speech synthesis as the use of creaky voice (and indeed other aspects of voice quality)

are known to play a critical role in spoken interaction (Campbell and Mokhtari, 2003),

e.g., with turn-taking (Ogden, 2001). Also, as creaky voice is known to be frequently

produced during hesitations (Carlson et al., 2006) its detection could also be used to help

identify hesitations which could, in turn, be used for distinguishing speaking styles or,

for instance, providing feedback on presentation skills. The robust automatic detection

of creaky voice would be beneficial for sociological studies (e.g., Wolk and Abdelli-Beruh,

2012) and studies on tonal patterns (Yu and Lam, 2011) in terms of allowing quantitative

analysis on larger volumes of data. Furthermore, as studies have shown listeners to be

sensitive to creaky voice in terms of recognition of the speaker’s identity (Böhm and

Shattuck-Hufnagel, 2007), the detection of creaky voice can be exploited for improving

speaker recognition systems (Espy-Wilson et al., 2006; Elliot, 2002).

Motivated by this, the present chapter describes a new algorithm for automatically

detecting creaky voice through the use of two acoustic parameters which describe aspects

of the LP-residual signal. The approach builds on previous work the present author

has been involved in (Drugman et al., 2012a). This initial study involved the use of a

single parameter which was evaluated on a rather small set of read text-to-speech (TTS)

synthesis data. The current chapter involves the inclusion of a further acoustic parameter
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as well as the incorporation of the features into a classifier for detecting creak. A much

larger evaluation is carried out here on a wide range of speech data, covering a variety

of speakers, gender, languages, recording conditions and speaking styles. Furthermore,

additional robustness experiments are conducted examining the effect of different noise

types and levels on the performance of the different methods.

8.2 State-of-the-art

Although a considerable amount of research has been carried out investigating the acoustic

characteristics of creaky voice, there is a clear lack of algorithms for detecting it automat-

ically. Some studies describe automatic detection of ‘irregular phonation’ (see e.g., Böhm

et al., 2010; Surana and Slifka, 2006a; Vishnubhotla and Espy-Wilson, 2006), a class within

which creaky voice is contained. For instance in Böhm et al. (2010) the authors derive

six acoustic parameters and use them as input to a support vector machine (SVM) based

classification system. Their method involved using acoustic measurements from previous

studies (i.e. Surana and Slifka, 2006a; Ishi et al., 2008b). In Surana and Slifka (2006a) the

authors propose the use of acoustic parameters including normalised root mean squared

amplitude and smoothed-energy-difference amplitude measures. However, misdetections

apparently occur in low f0 regions.

In the present chapter two creaky voice detection algorithms from the literature are

included (Ishi et al., 2008b; Vishnubhotla and Espy-Wilson, 2006) for comparison with

the proposed algorithm. They are now described in detail.

8.2.1 Ishi’s method for detection of vocal fry/creak

Recently an algorithm was presented for the automatic detection of vocal fry/creaky voice

(Ishi et al., 2008b) which builds on previous work by the same authors (Ishi, 2004; Ishi

et al., 2005). This algorithm involves detecting candidate regions in a power contour mea-

sured from a bandlimited speech signal. Then a combination of autocorrelation and cross-

correlation methods are used to discriminate creaky voice from ‘normal’ voiced speech and

unvoiced/silence regions, respectively. The full details of the algorithm are as follows.

The algorithm operates on the speech signal, which has been bandlimited to 100 -

1500 Hz. A ‘very short-term’ power contour is measured, with a frame length of 4 ms

and shift of 2 ms, in order to highlight the amplitude variation within individual pulses

(see Figure 8.1 panel b). Peaks are then detected in this contour and Power Peak (PwP)

parameters are derived for each peak based on the previous (PwP-rising) and following
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(PwP-falling) 5 frames (i.e. 10 ms) in the contour. The maximum power difference in

each direction is used as the PwP value and a threshold is applied to this parameter to

determine whether the peak can be used as a creak candidate location. In addition to

this, it has been suggested by the author (personal communication) that peaks more than

20 dB below the maximum power peak (for each utterance) can also be discarded.
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Figure 8.1: Illustration of creaky voice detection using the method proposed in Ishi et al.
(2008b). The speech waveform, with binary creak decision (dashed line), is shown with
the creaky region beginning from around 1.22 seconds (panel a), along with the very short
term power contour and detected local peaks (panel b), the Intraframe Periodicity (IFP)
contour (panel c) and the Interpulse Similarity (IPS) values (panel d). Horizontal lines
for IFP and IPS are given to illustrate the thresholds used.

Given these peak locations (creak candidates) a check is performed against a frame-

synchronised periodicity strength measure in order to discriminate creaky regions from

‘normal’ voiced regions. The Intra-Frame Periodicity (IFP, see Figure 8.1, panel (c))

contour is calculated with:

IFP = min

{
N

N − τ
· autoCorr(τ); τ = j · τ0; j = 1, 2, ...

}
(8.1)

where N is the frame length (set to 32 ms), τ is the autocorrelation lag, autoCorr is
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the normalised autocorrelation function, and τ0 is the lag of the strongest autocorrelation

peak. Note also that the search space for τ is limited to 15 ms and that the factor N
N−τ is

used to compensate for the decrease in amplitude with increasing τ in the autocorrelation

function. ‘Normal’ voiced regions are expected to have an IFP value close to 1, while

creaky (and non-voiced) regions are likely to show a value closer to 0. This is based on

the observation that creaky regions can display irregular temporal patterns and also, that

even in cases where creaky regions display a reasonable amount of periodicity, the very

long pulses will mean that the frame is not sufficiently long to capture strong periodicity

information. Finally, IFP values are set to 0 unless three successive frames are found to

be above a given threshold.

Next an Inter-Pulse Similarity (IPS, see Figure 8.1, panel (d)) measure is calculated

with:

IPS = max {CCorr(Fτ1 , Fτ2); τ1 − τ2 < Tmax} (8.2)

where CCorr is the cross-correlation function, Fτ1 and Fτ2 are the frames centred on

successive candidate peak locations, and Tmax is the maximum allowed distance between

adjacent peaks, and is set to 100 ms. Each frame is selected as the range of 5 ms around the

peak location. Adjacent creak pulses are expected to display a reasonably high similarity

(as the vocal tract setting is not expected to have significantly changed) and, hence, IPS

values are expected to be high (e.g., above 0.5). Non-speech and unvoiced regions, on the

other hand, are expected to display low levels of similarity and, hence, and IPS close to

0. If adjacent pulses are too far apart, i.e. above Tmax, IPS values are also set to 0.

The optimal thresholds suggested in the original publication (Ishi et al., 2008b) are

used, i.e. {PwP ≥ 7 dB & IFP ≤ 0.5 & IPS ≥ 0.5} for a peak to be considered to be

creaky (however, different thresholds have also been applied in a separate applied study,

Ishi et al., 2008a). The binary creak decision is then made by merging regions between

detected creak peaks (see Figure 8.1, panel (a)). This method is given the label Ishi Orig.

throughout this chapter.

In the original publication (Ishi et al., 2008b) the authors report an upper bound

detection rate of 74 % with a false alarm rate of 10 %, using thresholds optimised on the

same dataset. Note that frame level results were not reported.
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8.2.2 Extension of the Aperiodicity, Periodicity and Pitch (APP)

detector

This method has been proposed in Vishnubhotla and Espy-Wilson (2006) for the automatic

detection of ‘irregular phonation’ (a term they say they use interchangeably with creak).

The authors interpret this label also to include sounds referred to as vocal fry, diplophonia,

glottalisation, laryngealisation, pulse register phonation and glottal squeak (Vishnubhotla

and Espy-Wilson, 2006).

As part of the algorithm they make use of the Aperiodicity, Periodicity and Pitch

(APP) detector (originally presented in Deshmukh et al., 2005). This involves applying

a gamma-tone filterbank to decompose the speech signal into 60 frequency bands. An

Average Magnitude Difference Function (AMDF) is calculated on the separated frequency

bands (smoothed by the use of the Hilbert envelope) to determine aperiodicity/periodicity

in the signal. The AMDF function, γn(k), for each outputted signal is calculated with:

γn(k) =
∞∑

m=−∞

|x(n+m)w(m)− x(n+m− k)w(m− k)| (8.3)

where w(m) is a rectangular window centered on n and given a specified width. When the

signal is periodic the AMDF function will display pronounced ‘dips’ when k (the lags of the

function) is equal to integer multiples of the fundamental period. In the implementation

of the algorithm which was obtained, the frame length was set to 25 ms, with a shift of

2.5 ms.

Next, ‘irregular phonation’ is differentiated from aperiodic frames, breathy vowels and

voiced fricatives using the so-called dip profile of their AMDF in various frequency bands.

The dip profiles for ‘irregular phonation’ display distinctive clustering characteristics to

both regular phonation and speech with turbulent excitations. Identification of ‘irregular

phonation’ is on the basis of detection of this characteristic.

Finally, the problem of false positives in some stops is addressed by calculating the

spectral slope. This is done by fitting a regression line to the amplitude spectrum from

2 to 4 kHz. A threshold of -0.05 is empirically used to differentiate ‘irregular phonation’

from these stops. In the evaluation, the original implementation of the algorithm was

used, kindly shared by the authors. The method is given the label Vishnu.
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8.3 Proposed method

The current section presents a description of the proposed algorithm for automatically

detecting creaky regions in a speech signal. The method is based on further development

of the algorithm described in Drugman et al. (2012a). First an analysis of the excitation

characteristics of creaky voice is carried out which highlights the main acoustic features

which the algorithm is designed to detect. Then follows a description of the two compo-

nents of the algorithm, both of which are used as input features to a binary classifier (see

Section 8.3.4). Note that the two components attempt to describe different aspects of the

LP-residual signal in creaky regions. These two aspects may, at times, both be present.

At other times, however, just one is displayed.

8.3.1 Excitation characteristics

Following extensive qualitative analysis of the Linear Prediction (LP) residual signal (ob-

tained by LPC analysis and subsequent inverse filtering) some distinctive characteristics

were observed which appeared to be closely associated with creaky regions. The first

observation was the presence of secondary (or even tertiary) peaks proceeding the main

excitation peak which corresponds to the glottal closure instant (GCI, Drugman et al.,

2012c). This is illustrated in Figure 8.2, where strong residual peaks can be observed

before the residual peak which corresponds to the GCI (as shown by the derivative of the

EGG signal). Although secondary excitations and double-pulsing have frequently been

reported in the literature (e.g., Blomgren et al., 1998; Gobl and Nı́ Chasaide, 1992) these

secondary residual peaks frequently did not appear to correspond to secondary laryngeal

excitations (which would show up in the EGG signal). Instead, it is hypothesised that

often these peaks correspond to an abrupt glottal opening following a long closed phase.

Some preliminary comparison with glottal source derivative signals, estimated by inverse

filtering, and EGG signals appeared to support this. Nevertheless, strong secondary la-

ryngeal excitations did at times cause secondary peaks to occur in the LP-residual signal.

Following these observations, Component 1 of the algorithm is designed to exploit these

secondary peaks occurring in the LP-residual signal.

Further analysis of the LP-residual of creaky speech regions revealed that although

the above trend is very prevalent, secondary LP-residual peaks may sometimes be absent.

Considering the LP-residual signal in Figure 8.3 one can observe strong impulse-like peaks

with no secondary peaks, even when the EGG derivative is displaying small secondary

peaks.



8. Detection of creaky voice 162

0 0.02 0.04 0.06 0.08 0.1 0.12
−1

−0.5
0

0.5
1

A
m

pl
itu

de

Speech waveform

0 0.02 0.04 0.06 0.08 0.1 0.12

1
0.5

0
−0.5A

m
pl

itu
de

DEGG

0 0.02 0.04 0.06 0.08 0.1 0.12
−0.5

0
0.5

1

A
m

pl
itu

de

Time (seconds)

LP residual

Figure 8.2: Speech waveform (top panel), EGG derivative (middle panel) and LP-residual
(bottom panel) signals from a creaky region in an utterance produced by a male speaker.

Component 2 of the algorithm is, hence, designed to capture this specific feature com-

bined with the knowledge that creaky voicing produces considerably longer glottal pulse

duration (Titze and Sundberg, 1992; Blomgren et al., 1998).

8.3.2 Component 1: Detection of secondary excitation peaks

The block diagram of Component 1 of the proposed algorithm is shown in Figure 8.4.

This method is designed to exploit the secondary peaks in the residual excitation signal.

The residual signal is estimated following LPC analysis. The aim of this analysis is to

cancel the spectral contribution of both the vocal tract filter and the glottal source signal,

thereby rendering the spectrum of the LP-residual essentially flat. However, this residual

signal exhibits important phase properties of the excitation source, including the presence

of secondary peaks. The key idea of Component 1 is that when applying a resonator to

the LP-residual, secondary peaks will perturb its output and produce a greater amount of

harmonics. The full details of this method are as follows.

The LP-residual is obtained by LPC analysis of order (fs/1000) + 2 1, where fs is

1This LPC order is chosen in order to obtain a spectral envelope which is not biased to harmonics
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Figure 8.3: Speech waveform (top panel), EGG derivative (middle panel) and LP-residual
(bottom panel) signals from a creaky region in an utterance produced by a male speaker.

Figure 8.4: Workflow of Component 1 of the proposed technique. The H2-H1 parameter
is derived from the response of two resonators excited by the LP-residual signal. Both
resonators are centred on f0,mean but use different bandwidths. For details see text.

the sampling frequency. Two separate resonators are then applied to the residual signal

for different purposes. One is used for getting a more robust estimate of the f0 contour

in creaky regions while the other is to highlight the presence of secondary residual peaks.

Both resonators use a centre frequency of f0,mean, the mean f0 of the speaker. This value

is here estimated using the Summation of Residual Harmonics (SRH) method (Drugman

et al., 2011), although the choice of algorithm for this is not critical. Both resonators are

and is frequently used in the literature. Although it is widely known that LPC analysis becomes biased
towards harmonics for high f0 values (Villavicencio et al., 2006; Kay, 1988), creaky regions display a low
f0 and here LPC analysis was found to be suitable.
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characterised by two complex conjugate poles.

For estimating the f0 contour the bandwidth of Resonator 1 was set to 1000 Hz as it

gives a reasonable compromise between avoiding ambiguity with octave jumps (bandwidth

too high) and capturing the spread of f0 values from the f0,mean often found in creaky parts

(which might not be achieved correctly if the bandwidth is too low). To estimate the local

f0, a 50 ms-long Hanning window is applied to the resonator output and the corrected

autocorrelation function r′(τ) is calculated:

r′(τ) =
N

N − τ
· autoCorr(τ) (8.4)

where N is the window length (in samples) and τ is the number of autocorrelation lags. A

correction of N
N−τ is applied to compensate for the decreasing properties of the autocorre-

lation function with increasing τ (as is used in Ishi et al., 2008b). The local fundamental

period is then considered as the position of the maximum value in r′(τ) above the peak

centred on τ = 0.

For highlighting secondary excitations, a more pronounced resonating character is

needed and, hence, the bandwidth of Resonator 2 is set to 150 Hz. To measure the

importance of secondary pulses, the amplitude difference (in dB) between the two first

harmonics (H2−H1) is computed on the spectrum of the autocorrelation function, as it

allows to enhance harmonic peaks. Note that H2−H1 is then filtered by a 100 ms-long

moving average filter to lessen the impact of outlier values.

An example of the contour is shown for a speech utterance in Figure 8.5 where it is

clear that H2-H1 reaches much higher values in the annotated creaky voice region at the

end of the speech segment, and for which applying a threshold (of around 0 dB in this

case) would lead to good detection results.

An illustration of the steps involved in the workflow (depicted in Figure 8.4) is given

in Figure 8.6 for both a segment of speech involving modal phonation (on the left) and

creaky voice (on the right). The speech signal is displayed in the top row plots. In the

middle row, the residual signal and the output of Resonator 2 are represented.

In the case of modal phonation, it can be noted that the residual signal exhibits a

regular structure with major peaks only at the GCI positions. As a result, perturbations

between two major excitation peaks are relatively weak and the oscillating signal outputted

by Resonator 2 will only contain a small amount of harmonics. This is reflected in its

amplitude spectrum (in dB) in the bottom row of Figure 8.6 where the level at f0 is much

higher than for the second harmonic (i.e. 2 · f0). The difference H2-H1 in such a modal

phonation then reaches low negative values (-15 dB in the case of Figure 8.6).
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Figure 8.5: Illustration of the H2-H1 contour (thick line) for a speech segment with anno-
tated creaky voice region (dashed line). The left y-axis shows the scale for the amplitude
of the speech signal, whereas the right y-axis shows the scale for the H2-H1 contour in dB.

On the other hand, for creak, secondary pulses significantly re-excite the resonator

between two consecutive GCIs, leading to perturbations in its output. This effect is seen

in the corresponding amplitude spectrum which displays a greater richness of harmonics.

More specifically, the level at the second harmonic is much higher compared to the modal

phonation case, and can even exceed the level at f0. As a consequence, the presence of

secondary peaks in the excitation of creaky voice is reflected by a higher harmonicity in

the output of Resonator 2. This leads therefore to higher values of H2-H1 (9.22 dB for

the creaky example of Figure 8.6) compared to what is obtained for modal phonation.

8.3.3 Component 2: Residual peak prominence

Component 2 of the algorithm is designed to detect creaky speech regions where there are

prominent residual peaks (as shown in Figure 8.3). The prominent residual peaks may stem

from the sharp vocal fold closure resulting from high levels of adductive tension (Laver,

1980). This is combined with the knowledge that creaky regions contain very long glottal

pulses (Blomgren et al., 1998; Gobl and Nı́ Chasaide, 1992). The very long glottal pulses

may be due to ventricular incursion (Edmondson and Esling, 2006) where the ventricular

folds push down on the true vocal folds, causing an increased mass which vibrates at a

lower frequency. Creaky regions can, at times, display irregular temporal patterning which

can render frequency domain methods unsuitable. It follows that this second component

of the algorithm does not rely on signal information to do with periodicity but instead
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Figure 8.6: Example of modal phonation (left column) and creaky voice (right column)
uttered by the same speaker, with the speech waveform (top row), the LPC residual signal
(middle row, solid line) together with the output of Resonator 2 (in dashed line), and the
amplitude spectrum (in dB) of a frame of the output of Resonator 2 where the values for
f0 and 2 · f0 are indicated by crosses (bottom row).

looks to characterise individual pulses in the time domain. The method is carried out as

follows.

Initially residual peak prominence was measured directly from the LP-residual signal,

but further examination revealed this approach to be rather sensitive to additive noise.

Instead, the output of Resonator 1 (see Figure 8.4) was used. The setting of the resonator

bandwidth to 1000 Hz is suitable for highlighting the prominence of the main residual

peaks without being overly biased towards secondary peaks (if present).

The method operates on a fixed, non-overlapping frame basis using a rectangular win-

dow and with a frame-length of 30 ms. This roughly corresponds to two periods at 70 Hz.

In this method correct polarity of the speech signal is assumed (this can be determined

automatically for example using the method described in Drugman and Dutoit, 2011) and

the output of the resonator will display strong negative peaks. This signal is inverted so

that it displays strong positive peaks, corresponding to positive peaks in the LP-residual.

For each frame the absolute maximum peak in the resonator output is identified and

the frame is then shifted to be centred on this peak. Considering Figure 8.7 one can

observe for a creaky region (right panel) the prominent peak amplitude in the centre of

the frame. For a modal region (left panel), however, peaks from neighbouring glottal
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pulses are captured within the frame length.

By measuring the amplitude difference between the maximum peak (in the centre of the

frame) and the next strongest peak one can obtain a parameter value which differentiates

modal and creaky regions. In order to avoid selecting values in the vicinity of the main

centre peak, the search for the next strongest peak is made outside a distance of 6 ms of

the centre of the frame. This corresponds to 40 % of half the frame length which ensures

that there is sufficient space for peaks to occur from neighbouring glottal pulses. A value

is thus obtained for each frame producing the outputted parameter contour. This contour

was then filtered with a 3-point median filter to remove misdetections due to transients in

the signal.
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Figure 8.7: A 30 ms peak centred residual frame (thin line), with superimposed Resonator
1 output (thick dashed line) for a modal (left panel) and a creaky (right panel) utterance
segment. The residual peak prominence value for the modal segment is very close to 0,
while the value for the creaky segment is over 0.75. Both LP-residual and resonator output
signals are normalised in amplitude for clarity.

8.3.4 Classification using the two parameters

In order to detect creaky regions the two parameters were used as input features to a

binary decision tree classifier (Breiman et al., 1984). The separation of the two classes

(i.e. creak and non-creak) is done using a top-down approach where both classes are

initially placed at the root node and then a series of binary questions are asked (to do

with the input features) and for each question a new child node is created. This creates

the decision tree, the ends of which are leaf nodes.
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Decision trees were developed on a training set using the extracted parameter values

and the binary creak annotation labels (see Section 8.5.1). When inputting a training

example to the trained classifier the output is the posterior probability, P1, of the example

corresponding to class 1 (i.e. creaky) and the posterior probability, P0, of it corresponding

to the class 0 (i.e. non-creak). The standard binary decision is typically set to 1 if

P1 > 0.5, and otherwise 0. In the training phase the decision tree classifier is optimised

for minimising the error rate. However, for skewed datasets which contain a given class

to be detected which displays sparse occurrence (e.g., creaky voice or laughter) this error

criterion is not suitable. To address this a further processing was carried out during the

training phase. This involved making the decision strategy such that if P1 > α then the

output is set to 1, otherwise it is set to zero. α is varied in the range [0, 1] and the

setting which produced the higher F1 score on the training set is subsequently used for

the decision strategy in testing. Note that the F1 score is a more suitable criterion for a

dataset of the type used in this study (see Section 8.5.2).

In this chapter four methods involved the use of the classification approach described

above. The first component (labelled Comp. 1) and the second component (labelled

Comp. 2) of the proposed method were used separately and in combination (labelled

Comp. 1 & 2). The four parameters derived using the method by Ishi et al. (2008b)

and described in Section 8.2.1 were also included, i.e. PwP-rising, PwP-falling, IFP and

IPS (this method was labelled Ishi Opt).

8.3.5 Post-processing

Some final post-processing can then be carried out on the binary decision vector of the

proposed (or other) methods. To help remove misdetections in unvoiced and non-speech

areas, zero-crossings are measured on 20 ms frames. Areas with a zero crossing rate (ZCR,

i.e. number of zero-crossings per ms) of more than 5, were considered to be unvoiced or

silent parts and therefore excluded as potential creaky voice areas. Note that the use of

energy contours was deemed unsuitable particularly because conversational speech data

can display widely varying energy values. This is, of course, a rather basic method for

determining unvoiced regions and could be substituted with a more sophisticated method

(see for example Ghosh et al., 2011).

Finally, overly short detected creak regions were removed and nearby adjacent creak

regions were merged. A minimum creak length of 30 ms was used which corresponds

roughly to two periods at 70 Hz. The assumption here is that at least two pulses are

required for the perception of creaky voice and, again, that the perception of individual
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glottal pulses starts around 70 Hz (Titze, 1994). The binary creak decision vectors used

in this study were sampled every 10 ms, so the removal of short regions and merging of

close regions was done in the same operation through the use of a 5-point (i.e. 50 ms)

median filter applied to the binary decision vector. For instance this would remove one

or two positive creaky voice samples (i.e. ones) surrounded by negative decision samples

(i.e. zeros). On the other hand, if a zero had two positive decision samples on either side,

the median filter would merge the two regions and convert the zero to a one.

8.4 Speech material

In order to provide a thorough evaluation of detection performance a wide range of

speech databases was used which covered gender, language, read/conversational speech

and recording condition variations. All speech data were downsampled to 16 kHz. A

summary of the speech data used in the evaluation in the present chapter is given in Table

8.1.

8.4.1 Text-To-Speech databases

To evaluate performance in ideal recording conditions 100 sentences containing creaky

regions were selected from three Text-To-Speech (TTS) databases. An American male

speaker (BDL) was selected from the ARCTIC database (Kominek and Black, 2004).

Utterances from a Finnish male speaker (MV, as was used in Vainio, 2001) and from a

Finnish female speaker (HS, as was used in Silen et al., 2009) were also used.

8.4.2 Spontal corpus

Next the author wished to include conversational speech data recorded in high quality

conditions. The Spontal corpus (described in Edlund et al., 2010) contains audio, video

and motion capture data from a large number of dialogues lasting at least 30 minutes,

carried out in a recording studio. The dialogues were in Swedish and participants were

encouraged to talk about whatever topic they wished.

The audio data from the microphone channel of one male (label: 09-13-02) and one

female speaker (label: 09-03-01) was selected, as these speakers were deemed to produce

frequent creaky utterances. Audio was captured through the use of two microphones per

speaker: a Brüel & Kjær 4003 omni-directional goose-neck at 1m distance, and a head-

mounted Beyerdynamic Opus 54 cardioid which was used to obtain optimal recording
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quality. In the current chapter only the audio channels from the head-mounted microphone

were used. The original sampling rate was 48 kHz.

8.4.3 American conversational data

Audio streams were selected from two male and two female American English speakers

who engaged in conversations on the topic of food. The speech data were part of a larger

number of conversational recordings, additional to the data used in Yuasa (2010). For

each speaker the audio was of approximately 10 minutes in duration and was captured

using a headset resting around the speaker’s neck with the microphone pointing to the

mouth. Conversations were carried out in a booth of a media center, a relatively quiet

but relaxing environment suited for natural conversations.

8.4.4 Japanese conversational data

Also included were the audio recordings of two female Japanese speakers, previously de-

scribed in Magnuson (2011). Both speakers spoke a Japanese dialect spoken in Western

Japan and engaged in a 30 minute conversation. The speakers were shown some short

animated films before starting the conversation. For the conversation itself they were en-

couraged to talk about any topic they wished but to refer to the short film at some stage

during the conversation. Audio was recorded on AKG C420 III PP MicroMic headset

microphones wired through a BeachTek DXA-2S pre-amp connected to the video cam-

era (Sony DCR-TRV38 Mini DV camera). WAV files were extracted from the video into

separate channels.

8.5 Experimental setup

For the experiments conducted as part of this study creaky voice regions were detected

using the proposed algorithm (Section 8.3) as well as Ishi’s algorithm (Section 8.2.1) and

the algorithm by Vishnubhotla (Section 8.2.2). The experimental setup is now described

in full.

8.5.1 Human annotation

Unfortunately there is no obvious way of obtaining an automatic reference for creaky

regions in speech. Furthermore, the only relatively large database of speech data labelled

for creaky voice was the database used in Ishi et al. (2008b). As a result, in order to have
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Table 8.1: Summary of the speech data used for evaluating creaky voice detection perfor-
mance.

Database ID Gender Country Conditions Speech Duration

TTS
US-M Male USA Studio Read 100 Sentences
Fin-F Female Finland Studio Read 100 Sentences
Fin-M Male Finland Studio Read 100 Sentences

Spontal
F Female Sweden Studio Conversation 30+ Minutes
M Male Sweden Studio Conversation 30+ Minutes

US

F1 Female USA Quiet room Conversation 10+ Minutes
M1 Female USA Quiet room Conversation 10+ Minutes
M2 Male USA Quiet room Conversation 10+ Minutes
F2 Male USA Quiet room Conversation 10+ Minutes

Japan
F1 Female Japan Quiet room Conversation 30+ Minutes
F2 Female Japan Quiet room Conversation 30+ Minutes

a reference to evaluate detection performance human annotations of the speech data was

carried out. At the same time the aim was to evaluate performance of the algorithms

on a large set of data covering a range of different speaking styles, languages, recording

conditions, etc. As the manual annotation of this volume of data is both tedious and time-

consuming, a single person (the present author) carried out the annotation. The annotator

strictly followed the annotation procedure outlined in Ishi et al. (2008b). Ultimately the

binary decision on the presence of creaky voice was based on the auditory criterion “a rough

quality with the additional sensation of repeating impulses”. However, the annotation was

also guided through the use of spectrograms and f0 contours. Wideband spectrograms

typically display vertical striations (Ogden, 2009) and f0 contours can frequently display

spurious values or disappear (i.e. are considered unvoiced) and, hence, these displays were

used to help guide the annotation.

Furthermore, manual voice activity segmentation was carried out for the speech data

containing conversational speech. The exception to this was in the Spontal corpus where

automatic voice activity detection was carried out with the algorithm proposed in Heldner

et al. (2011).

The percentage of time speaking which was annotated as creaky voice was calculated

for the 11 speakers used in the evaluation and the average was 6.7 % with a range of 3.6

- 10.5 %.
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8.5.2 Evaluation metrics

To assess the performance of the algorithms evaluation metrics were calculated at both

the event level and the frame level. For the event level the metrics used were: hit (i.e.

some part of a reference creak region was correctly detected), miss (i.e. for a reference

creak region no positive detection was made) and false alarm (i.e. within a detected creak

region there was no reference creak).

At the frame level the standard metrics were used, i.e. True Positive Rate (TPR, also

known as recall):

TPR =
True positives

True positives + False negatives
(8.5)

and False Positive Rate (FPR):

FPR =
False positives

False positives + True negatives
(8.6)

Note that True Positive refers to a given frame containing creaky voice that has been

detected as containing creaky voice. False Negative is where again the frame contains

creaky voice but it has not been detected. For False Positive the frame does not contain

creaky voice but has been detected as containing it. Finally, True Negative refers to a

non-creaky frame which has not been detected as containing creaky voice. The F1 score

is also used which combines true positives, false positives and false negatives into one

single metric. This metric is particularly useful when analysing skewed datasets where

the feature being considered has a rather sparse occurrence (e.g., for laughter detection,

Scherer et al., 2009), and is therefore well suited for assessing the performance of creaky

voice detection techniques. The metric is bound between 0 and 1, with 1 indicating perfect

detection:

F1 =
2 · True positives

2 · True positives + false positives + false negatives
∈ [0, 1] (8.7)

8.5.3 Experiments on clean speech

In order to evaluate the detection performance of the various methods, analysis was carried

out on the speech databases described in Section 8.4. For the methods using the decision

tree classifier (i.e. Comp. 1, Comp. 2, Comp. 1 & 2 and Ishi Opt.), a leave one speaker

out design was used whereby the speech data of a given speaker was held out for testing

and the remainder of the speech data was used for training the classifier and optimising

the decision strategy (see Section 8.3.4). The procedure was repeated for each speaker.
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For the methods Vishnu. (Vishnubhotla and Espy-Wilson, 2006) and Ishi Orig. (Ishi

et al., 2008b) the same settings as were described in the original publications were used

for all speakers.

There were three main aims of the experiments on clean speech:

1. A preliminary assessment of the suitability of each of the classification methods for

detecting creaky regions.

2. To examine the effect of the post-processing (described in Section 8.3.5) on the

methods, with analysis of the entire speech dataset.

3. To provide a thorough presentation of the performance of the difference methods

using both event and frame level metrics.

8.5.4 Robustness to additive noise

In addition to examining detection performance on a range of speech databases experi-

ments were also carried out to analyse the robustness of the algorithms to additive noise.

For this only the TTS databases were used which were recorded in high-quality conditions.

Degraded conditions were simulated by adding noise to the original speech waveform at

various signal-to-noise ratio (SNR) settings. Both white noise and babble noise (also known

as cocktail party noise) were considered. The noise signals were taken from the Noisex-92

database (Varga and Steeneken, 1993). All parameters from the different methods were

extracted from speech with the various types and levels of noise added. Then a similar

leave one speaker out approach, as was used described in Section 8.5.3, was applied. Here,

however, optimisation of the classification was done on a ‘clean’ training set, whereas

testing was carried out on a test set with noise added. The F1 score was calculated for

each test set (i.e. each speaker) for the various noise types/levels. Note that for these

robustness testing experiments the zero-crossing rate (ZCR) feature used as part of the

post-processing was omitted. This is because additive noise is likely to severely affect the

rate of zero-crossings and, hence, this will hinder the assessment of the detection methods

themselves.
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8.6 Results on ‘clean’ data

8.6.1 Preliminary results on TTS database

An illustration of the performance of the six detection methods on the TTS databases is

shown in Figure 8.8. The F1 scores for Comp. 1 and Comp. 2 are comparatively high, and

the synergic effect of their combination is clearly apparent with an important improvement

over the individual components for each of the three speakers. The prevalence of the two

measures can be observed here and although Comp. 1 is more prevalent, Comp. 2 still

provides better detection than the other comparison methods for two of the three speakers.

Furthermore, as it is clear that their combination improves the detection performance, only

the combination of the two (i.e. Comp. 1 & 2) will be considered for the remainder of the

study.
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Figure 8.8: F1 scores for the six different detection methods on the TTS database.

Ishi’s algorithm shows strong performance on the Finnish female speaker, with an

improvement over the original algorithm when the parameters are used as inputs to the

decision tree classifier. A small improvement is also seen for the American male speaker

and a slight reduction for the Finnish male.

The algorithm described in Vishnubhotla and Espy-Wilson (2006) (labelled Vishnu.)

displayed relatively low performance compared to the other algorithms, with a consistently

low F1 score. This was found to be largely due to an high number of false alarms. In the

original study (Vishnubhotla and Espy-Wilson, 2006) the authors use the terms ‘irregular

phonation’ and creak interchangeably, but upon examination of the false alarms it was

found that a broader class of ‘irregular phonation’ types were detected, many of which

did not match the auditory criterion used in this study and in Ishi et al. (2008b). As a

result this algorithm was excluded from the remainder of the analysis as the grounds for
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comparison seemed tenuous.

8.6.2 Effect of post-processing

The effect of the post-processing step on the event level metrics, summed across all speak-

ers, on the three detection methods is shown in Table 8.2. Although an increase in misses

can be observed, there is, nevertheless, a substantial reduction (in the region of 50 %) in

false alarms for the three methods. It is clear that the use of the decision tree classifier

with the parameters from Ishi et al. (2008b) as input features (i.e. Ishi Opt.) causes both

an increase in hits but also a substantial increase in false alarms. The post-processing step

considerably reduces the number of false alarms, although Ishi Opt. still displays more

false alarms than the other two methods. As will be seen in Section 8.6.3 a large propor-

tion of these false alarms come from the Finnish male speaker in the TTS database, where

Ishi Opt. frequently produces misdetections in low pitch, non-creak, voiced segments.

Table 8.2: Hits, misses and false alarms totalled across all speakers for the four detection
methods. Results are shown without and with additional post-processing.

WITHOUT POST-PROCESSING WITH POST-PROCESSING
Method Hits misses false alarms Hits misses false alarms

Comp. 1&2 2320 426 2039 2221 525 1009
Ishi Orig. 1808 938 2311 1617 1129 1206
Ishi Opt. 2264 482 7142 2086 660 3561

A slight improvement of F1 score has been noticed for all techniques. The F1 score

for Comp. 1 & 2 has been improved on average by 0.015 ± 0.007 (standard deviation),

for Ishi Orig. by 0.001 ± 0.011, and for Ishi Opt by 0.019 ± 0.016. There is a rather

minor effect of the post-processing on F1, although there is a considerable improvement

at the event level. This can be explained by the fact that the majority of the false alarms

shown in the event level results were short in duration and, hence, their removal did not

contribute strongly to the resulting F1 scores.

As the post-processing brought an improvement to the three methods (particularly in

terms of event level metrics) it will be used in with these three methods (i.e. Comp. 1 &

2, Ishi Orig. and Ishi Opt.) for remainder of the study.
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8.6.3 Detailed survey of detection performance

The frame level results for the three detection methods are presented in Figure 8.9, with

the event level results shown in Table 8.3. Note that the F1 score, shown in the right

column of Figure 8.9, gives the clearest impression of the performance of the detection

methods in a single measure and, hence, will receive most attention.

F
1

Figure 8.9: Frame level metrics (i.e. TPR, FPR and F1) for the three detection methods
shown for each speaker in the four databases. M is used for male and F for female.

Considering Figure 8.9 one can observe that the proposed detection method (Comp.

1 & 2) produced higher F1 scores than the two comparison methods for every speaker,

with the exception of Female 2 from the US database where Comp. 1 & 2 and Ishi Opt.

produced the same F1 score of 0.49). This is due to a comparatively high true positive

rate (TPR) and low false positive rate (FPR). However, for female 1 in the US database

there is relatively high FPR for Comp. 1 & 2. This was investigated and it was found
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that a large proportion of the false alarms contained noises from the speaker’s mouth

colliding with the microphone or other background noises, mostly occurring as the person

was speaking. Additional features for detecting such noises would help reduce the number

of false alarms of this kind.

This general trend was also supported in the event level results (Table 8.3) where Comp.

1 & 2 gave a higher number of hits and a lower number of misses than Ishi Orig. for every

speaker. This was often combined with a lower number of false alarms. Compared with

Ishi Opt., Comp. 1 & 2 had a more similar level of hits and misses, although it generally

led to a much lower number of false alarms.

The F1 score for Ishi Opt was higher than Ishi Orig for almost every speaker (the

exception being the Finnish male speaker from the TTS database). This was due to an

increased TPR over Ishi Orig, but this was also coupled with an increased FPR for every

speaker.

Table 8.3: Event level results (i.e. hits, misses and false alarms) for the three creaky voice
detection methods for each speaker in the four databases.

COMP 1& 2 ISHI ORIG ISHI OPT
Database Speaker hits misses FAs hits misses FAs hits misses FAs

TTS
US-M 153 12 42 111 54 97 145 20 312
Finn-F 211 51 7 171 91 13 220 42 90
Finn-M 193 20 53 173 40 477 195 18 1098

Swedish
F 378 142 192 174 346 72 247 273 225
M 237 33 103 221 49 157 240 30 652

US

F1 192 37 212 154 75 84 178 51 233
M1 75 12 53 55 32 60 73 14 257
M2 89 16 35 64 41 182 71 34 294
F2 37 17 38 31 23 18 39 15 68

Japanese
F1 413 132 167 274 271 28 422 123 250
F2 243 53 107 189 107 18 256 40 82

For Ishi Opt. there was generally a higher FPR and number of false alarms for male

speakers. This was particularly true for the Finnish male speaker in the TTS database.

This speaker had the lowest pitch of all the speakers with a mean f0 typically around 80

Hz. The false alarms were investigated and they were found to be frequently due to a lack

of distinction between low pitch, voiced, non-creaky segments and true creaky segments.

The IFP parameter, which is utilised in these methods for differentiating normal voiced

regions from creaky regions, frequently produced very low values in these low pitch regions
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which led to these false alarms. Further features to help disambiguate these two classes

would certainly improve the detection performance when using the parameters from Ishi

et al. (2008b) for detecting creak.

In order to investigate whether the F1 scores for the proposed detection method were

significantly higher than those from the two comparison methods, A one-way ANOVA was

carried out with F1 score treated as the dependent variable and detection method as the

independent variable. This revealed that the detection method had a significant effect on

the F1 score [F(2,30) = 15.002, p < 0.001], and subsequent pairwise comparisons carried

out using Tukey’s Honestly Significant Difference (HSD) test revealed that the Comp. 1

& 2 method gave significantly higher F1 scores than both Ishi Orig. (p < 0.001) and Ishi

Opt. (p < 0.01).

Also, to investigate whether gender had a significant effect on the F1 scores for each of

the methods, a two-way ANOVA was carried out with F1 score as the dependent variable

and with detection method and gender as the independent variables. Although lower mean

F1 scores were observed for females with the Comp. 1 & 2 method, and lower means for

males in the two Ishi methods, the two-way ANOVA revealed no significant effect of gender

[F(1,27) = 0.057, p = 0.81]. However, repeating the same test with FPR as the dependent

variable gender was found to have a significant effect [F(1,27) = 25.078, p < 0.001] and

pairwise comparisons (using Tukey’s HSD) revealed that for Comp. 1& 2 and Ishi Opt.

FPR was significantly higher (p < 0.05) for males.

8.7 Results on degraded data

The effect of additive noise on the detection performance of the three methods is illustrated

in Figure 8.10. It can be observed that in the white noise condition the Comp. 1 & 2

method achieves the highest F1 score at all levels of signal to noise ratio (SNR). Ishi

Opt. achieves a slightly higher F1 than Ishi Orig. down to an SNR of 10 dB. For the

babble noise condition again the Comp. 1 & 2 method attains a higher F1 than the two

comparison methods down to an SNR of 20 dB. However, at SNR of 10 dB the F1 for

Comp. 1 & 2 falls slightly below that of Ishi Opt. All methods deteriorate severely at 0

dB SNR.

The findings here are encouraging for the proposed method as they suggest Comp. 1 &

2 can provide superior detection of creaky voice even in conditions with moderately high

levels of noise. Babble noise is shown to have a stronger negative effect on the performance

of the three methods compared to white noise. This is likely due to the more pronounced

low frequency characteristic of babble compared to white noise which more severely affects
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Figure 8.10: Effect of white noise (left panel) and babble noise (right panel) on the F1
score (averaged across the three speakers in the TTS database) achieved by the three
creaky voice detection methods.

the parameters used in the three methods at low SNR levels.

8.8 Discussion and conclusion

This chapter presents a new method for automatically detecting creaky voice in speech

signals by exploiting characteristics of the LP-residual signal, namely the presence of sec-

ondary peaks and long glottal pulses with prominent impulse-like excitation peaks. Res-

onators were applied to the LP-residual and two parameters were derived from the char-

acteristics of the resonator output. These parameters were then used as input features

to a decision tree classifier. The resulting detection performance was shown to signifi-

cantly outperform existing creaky voice detection methods on a large range of speech data

covering different speakers, gender, languages, recording conditions and speaking styles

(i.e. read vs conversational speech). These findings build on the initial promising results

reported in Drugman et al. (2012a).

Furthermore, the new method demonstrated robustness to white noise, with the highest

performance across all SNR levels, and to babble noise, with improved detection over the

comparison methods down to 20 dB SNR.

The inclusion of the parameters derived using the methods described in Ishi et al.

(2008b) in a decision tree classifier which was optimised on training sets brought some

improvement to the overall detection performance compared to the original algorithm,

with the original threshold settings. However, despite this improvement there was still an
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increase in the level of false alarms. The inclusion of further features, in such a classifier,

which could help disambiguate non-creaky voiced segments and creaky segments would

certainly bring a further improvement to the detection performance.

8.9 Applications

The new creaky voice detection method described here has a very strong potential for

including creaky voice in speech technology applications. My initial collaborative work

on modelling the creaky excitation for statistical parametric speech synthesis involved the

use of manual creak annotation. By apply the new creaky voice detection method this

process could be automated. My on-going collaborative work on this topic has involved

investigate the extent to which contextual factors (phoneme, word stress, position in the

sentence, prosodic context, etc) can be used to predict locations of creak. This has also

involved the use of the detection algorithm. Finally, it is hoped that the new algorithm

can be used to help quantitatively study the use of creaky voice on larger volumes of data

and to investigate its potential in applications like speaker identification.
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Chapter 9

General discussion and conclusions

This thesis documents a series of developments in glottal source and voice quality analy-

sis. Specifically, the objective was to describe and evaluate novel algorithms to improve

automatic analysis of the voice.

Initially descriptions were provided of the physiological and acoustic correlates of differ-

ent vocal settings (Chapter 2). Chapter 2 also summarises the source-filter theory (Fant,

1960) on which much of the glottal source and voice quality analysis in this thesis (and

indeed elsewhere in the literature) is based. Then in Chapter 3 the importance of glottal

source and voice quality variation in spoken communication is emphasised. It is also il-

lustrated here how characterisation of variations in vocal settings can be used in speech

technology and, further, how more robust algorithms would facilitate fuller exploitation

of these important aspects of speech.

The subsequent chapters then proceed to describe and evaluate novel algorithms to help

improve the robustness of glottal source and voice quality analysis. The detection of glottal

closure instants (GCIs), which is a fundamental starting point for glottal synchronous

analysis, is the focus of Chapter 4. A new algorithm, SE-VQ, is proposed, designed to

handle the different acoustic characteristics of a range of phonation types. The method was

shown to have similar performance to the state-of-the-art on standard speech databases

and to produce an important reduction in false alarms in creaky voice regions.

Some improvement in the precision of GCI localisation was also observed. However

a higher accuracy error still occurs for certain phonation types, e.g., breathy and harsh

voice. Note that this was also true for other state-of-the-art algorithms. The dynamic

programming component of the algorithm appears to be a useful tool for maintaining

consistent positioning of the GCIs, although a reasonable starting point (i.e. a prominent

LP-residual peak) is required in order to obtain this consistent performance. The problem

183
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of improving GCI detection for speech where there are no clear residual peaks remains an

open and important question for future research.

The SE-VQ algorithm was subsequently used for locating GCIs in a new method for pa-

rameterisation of an estimated glottal source derivative using the LF model (DyProg-LF,

Chapter 5). The new algorithm was shown to provide consistent glottal source parame-

terisation on a carefully controlled dataset, with reference values obtained from manual

analysis, as well as on a larger dataset where reference values were automatically derived

from EGG signals. In particular the dynamic programming component appeared to be

a suitable mechanism for maintaining a consistency in the parameter contour in regions

of high stationarity. This was a problem noted in previous LF model fitting algorithms.

An area yet to be examined is the design and evaluation of glottal modelling methods for

more irregular phonation types such as creaky or harsh voice. There may also be scope

for extending this algorithm to be used in the characterisation of certain voice patholo-

gies. Such research would look to extend some recent methodological developments for

the estimation and characterisation of the glottal source for dysphonic speakers (see e.g.,

Dubuisson, 2012);

Note that the same dynamic programming algorithm was exploited for both the SE-VQ

and DyProg-LF methods. The work by Talkin (1995) was the inspiration for using this

particular dynamic programming algorithm. Even though the f0 and formant trackers were

developed by Talkin in the 1980s and 1990s, they are still widely used today. Although

this dynamic programming algorithm was mainly used by Talkin to avoid gross errors

(i.e. octave doubling/halfing in f0 tracking and the selection of the number of formants in

the formant tracking) evidence in the present thesis suggests that by setting appropriate

target and transition costs, and their respective weights, this algorithm can be used to

avoid more subtle errors.

This parameterisation algorithm, as well as other methods for glottal source parame-

terisation and glottal inverse filtering were evaluated using a range of different experiments

in Chapter 6. Model fitting methods, and in particular the newly proposed method, were

shown to be considerably more effective at discriminating breathy to tense voice than has

previously been reported. Furthermore, the DyProg-LF method was shown to provide

more natural resynthesised utterances than a comparison method.

Chapter 6 also highlights the various shortcomings of the three main glottal inverse

filtering methods. It is apparent that the inverse filtering problem is yet to be sufficiently

solved. This is despite many years of research attention to this topic. Nevertheless, by

improving the robustness of subsequent parameterisation approaches, moderate errors in

the inverse filtering may be negated somewhat. The development of algorithms for both
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glottal inverse filtering and glottal source parameterisation is still hampered by the lack of

robust, automatically derived reference values. The approach in this thesis was to evaluate

from several different viewpoints in order to achieve a rounded picture of the performance

of the algorithms. Even still, research in this area would certainly benefit from a concerted

effort to find robust evaluation metrics and procedures.

In Chapter 7, a new parameter, the Maxima Dispersion Quotient (MDQ), is described

for differentiating breathy to tense voice using features of a wavelet transform. MDQ was

shown to be more effective than existing parameters for discriminating the voice qualities

and, in particular, on continuous speech. The effectiveness of the comparison parameters

degraded severely for continuous speech. These methods require prior glottal inverse

filtering and as a result the findings here also point the shortcomings of automatic glottal

inverse filtering of running speech.

The final experimental chapter, Chapter 8, describes two acoustic parameters derived

from the Linear Prediction (LP) residual for characterising creaky voice. These parameters

were used as inputs to a decision tree classifier which was shown to significantly improve

classification of creak, over the state-of-the-art, on a range of speech data varying in

terms of speaker, gender, language, recording condition and speaking style. The results

in particular showed an increase in true positives for the proposed method. A variety of

acoustic characteristics can give rise to the perception of creak and, hence, these findings

suggest that the proposed parameters cover much of this variety. Even still, the percentage

of true positives can be increased further and one obvious direction would be to include

parameters from comparison methods as part of a larger feature vector to be used in a

classifier. Further gains may be achieved by optimising the classifier type and settings.

Nevertheless, the approach used in this thesis involving simply two acoustic parameters

and a straightforward classification method already achieved good results.

One of the main aims of the thesis was to develop new methods for detecting various

commonly occurring voice qualities and the new algorithms presented in Chapter 7 and 8

go a long way to achieving this aim. Despite this, the detection of certain voice qualities

(e.g., whisper, harsh voice) has not been covered in this thesis. Some recent developments

in the literature have looked to tackle this problem of detecting other voice qualities (see

for example Ishi et al., 2011; Obin, 2012), but there still remains much scope to improve

the performance of these methods to help further facilitate the use of voice quality in

speech technology.

A final contribution of the thesis is a software package, the Voice analysis toolkit, which

has been made publicly available. The toolkit contains the novel algorithms described in

Chapters 4 - 8 and is intended to encourage usage in applied studies, experimentation and
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feedback. The README file contained in the toolkit is also given in Appendix B. There

are, of course several other toolkits for carrying voice analysis available. For instance,

the VOICEBOX1 toolkit which provides a large set of functions for carrying out speech

processing, including LPC, f0 tracking and peak-picking algorithms, the APARAT2 (Airas,

2008), SKY3 (Kreiman et al., 2006) and Voice Sauce 4 toolkits which provide graphical user

interfaces (GUIs) for carrying out glottal source analysis and a recent toolkit, GLOAT5,

which contains a range of novel algorithms, including: f0 tracking, voicing decision, GCI

detection, signal polarity detection, complex-cepstrum based decomposition, etc.

The Voice analysis toolkit produced in the present research is complementary to these

existing toolkits. In fact both GLOAT and VOICEBOX are utilised in the current toolkit.

Furthermore, the novel algorithms contained in this new toolkit can be easily integrated

into existing GUIs. These methods have also been integrated into a new GUI for glot-

tal source analysis, which allows both manual and automatic approaches, that has been

developed at the Phonetics and Speech Laboratory in Trinity College.

9.1 Future directions

From the above discussion, it may be clear that despite the progress made as part of this

thesis there remains a host of research problems outstanding, in terms of the development

of methods for glottal source and voice quality analysis. For glottal source analysis, a major

outlying problem remains to be the effectiveness of glottal inverse filtering of continuous

speech. In terms of parameterisation using glottal models an important challenge is to

design methods appropriate for the modelling of irregular (in terms of periodicity and

amplitude modulation) phonation types (e.g., harsh and creaky voice). For the detection of

changes in voice quality, the design of further features which are suitable for characterising

speech recorded in less than ideal conditions is a clear research goal. Furthermore, such

new features should extend to other non-modal voice qualities. This would benefit the

inclusion of voice quality in speech technology applications.

In terms of application of the methods developed within this thesis, on-going and future

research will involve exploiting the newly developed algorithms for different purposes.

An illustration was given in Chapter 1 of how fine-grained glottal synchronous methods

(Chapters 4 - 6) could be combined with coarse-grained voice quality detection methods

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
2http://sourceforge.net/projects/aparat/
3http://www.surgery.medsch.ucla.edu/glottalaffairs/software.htm
4http://www.ee.ucla.edu/~spapl/voicesauce/
5http://tcts.fpms.ac.be/~drugman/Toolbox/
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(Chapters 7 - 8) for the purpose of improving statistical parametric speech synthesis. In

fact the author’s on-going research has exploited methods from both of these parts of the

thesis for exactly this purpose.

The study described in Drugman et al. (2012b) proposes a method for incorporating

creaky voice in parametric speech synthesis. Initially creaky regions need to be identified

(which can be done using the method described in Chapter 8). As GCIs are required for

this method, the SE-VQ algorithm (Chapter 4) is also exploited in this study. Indeed

many other potential speech technology applications can be envisaged which would draw

on findings from both these parts of the thesis.

Other future directions will involve the use of the SE-VQ algorithm (Chapter 4) and the

DyProg-LF parameterisation method (Chapter 5) to help automate and semi-automate the

measurement workflows carried out in linguistic studies on the role of the glottal source in

the prosody of spoken language, building on previous studies (Gobl, 1988; Yanushevskaya

et al., 2009, 2010; Nı́ Chasaide et al., 2011). As was stated above, these methods have been

integrated into the in-house graphical user interface (GUI) at the Phonetics and Speech

Laboratory for this very purpose.

Furthermore, it is envisaged that the SE-VQ and DyProg-LF methods will be ex-

ploited in parametric speech synthesis and voice modification systems. It is hoped that

these methods will help provide more natural rendering of the speakers voice quality vari-

ation and will facilitate the design of platforms that allow flexible manipulation of voice

characteristics at synthesis time.

Some previous work in collaboration with other researchers involved the clustering and

separation of speaking styles using voice quality features (Székely et al., 2012b; Scherer

et al., 2012b). The hope is to continue these collaborations and to utilise the methods

for discriminating breathy, tense and creaky voice (Chapters 7 - 8) to help improve this

research.

Finally, it has been mentioned in this thesis that the study of the usage of voice

quality has been hampered by the lack of robust detection algorithms. It is hoped that

the methods described in Chapters 7 - 8 can be leveraged, both by the present author and

by other people in the research community, to help carry out more quantitative analysis

on the use of voice quality variation in larger volumes of data. The new Voice analysis

toolkit should help facilitate this process.
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GCI appendix

The pairwise comparisons following the statistical analysis described in Chapter 4 Section

4.5.6 are summarised in Tables A.1-A.2 (IR) and A.3-A.4 (IDA).
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Table A.1: Summary of the pairwise comparisons for Identification Rate (IR) following
ANOVAs and subsequent posthoc testing using Tukey’s Honestly Significant Difference
(HSD) test for modal, tense, breathy and harsh phonation types. *** (p < 0.001), ** (p
< 0.01) and * (p < 0.05) indicate significant differences in favour of the algorithms on the
vertical, while +++ (p < 0.001), ++ (p < 0.01) and + (p < 0.05) indicate significant
differences in favour of the algorithms on the horizontal axis.

ESPS SEDREAMS DYPSA YAGA ZFF

Modal
SE-VQ 0.98 0.99 *** 0.99 0.09
ESPS 0.94 *** 1.00 0.41
SEDREAMS *** 0.95 0.05
DYPSA +++ +++
YAGA 0.35

Tense
SE-VQ 0.99 0.99 *** 0.09 ***
ESPS 0.99 *** 0.43 *
SEDREAMS *** 0.15 ***
DYPSA +++ 0.07
YAGA 0.21

Breathy
SE-VQ 0.99 1.00 0.22 0.99 ***
ESPS 0.99 0.58 0.99 ***
SEDREAMS 0.22 0.99 ***
DYPSA 0.22 0.28 ***
YAGA ***

Harsh
SE-VQ 0.99 0.98 * 0.99 ***
ESPS 0.99 0.11 1.00 ***
SEDREAMS 0.2 0.99 ***
DYPSA 0.10 +
YAGA ***
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Table A.2: Summary of the pairwise comparisons for Identification Rate (IR) following
ANOVAs and subsequent posthoc testing using Tukey’s Honestly Significant Difference
(HSD) test for modal, tense, falsetto and creaky phonation types. *** (p < 0.001), **
(p < 0.01) and * (p < 0.05) indicate significant differences in favour of the algorithms on
the vertical, while +++ (p < 0.001), ++ (p < 0.01) and + (p < 0.05) indicate significant
differences in favour of the algorithms on the horizontal axis.

ESPS SEDREAMS DYPSA YAGA ZFF

Falsetto
SE-VQ 0.79 0.98 * ** 0.99
ESPS 0.36 *** *** 0.92
SEDREAMS *** * 0.92
DYPSA +++ +++
YAGA +++

Creaky
SE-VQ 0.06 *** ** *** ***
ESPS 0.48 0.76 *** 0.36
SEDREAMS 0.99 0.06 0.99
DYPSA * 0.99
YAGA 0.10
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Table A.3: Summary of the pairwise comparisons for Identification Accuracy (IDA)
following ANOVAs and subsequent posthoc testing using Tukey’s Honestly Significant
Difference (HSD) test for modal, tense, breathy and harsh phonation types. *** (p <
0.001), ** (p < 0.01) and * (p < 0.05) indicate significant differences in favour of the
algorithms on the vertical, while +++ (p < 0.001), ++ (p < 0.01) and + (p < 0.05)
indicate significant differences in favour of the algorithms on the horizontal axis.

ESPS SEDREAMS DYPSA YAGA ZFF

Modal
SE-VQ 0.94 0.78 *** 0.24 0.99
ESPS 0.99 *** 0.82 0.88
SEDREAMS *** 0.95 0.67
DYPSA +++ +++
YAGA 0.16

Tense
SE-VQ 0.99 * *** *** 0.99
ESPS ** *** *** 0.95
SEDREAMS *** *** 0.06
DYPSA 0.77 +++
YAGA +++

Breathy
SE-VQ 0.99 0.99 *** 0.98 +++
ESPS 0.99 *** 0.99 +++
SEDREAMS *** 0.99 +++
DYPSA +++ +++
YAGA +++

Harsh
SE-VQ 0.98 0.95 ** 0.21 0.99
ESPS 0.99 * 0.62 0.9
SEDREAMS * 0.73 0.80
DYPSA 0.49 +++
YAGA 0.09
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Table A.4: Summary of the pairwise comparisons for Identification Accuracy (IDA)
following ANOVAs and subsequent posthoc testing using Tukey’s Honestly Significant
Difference (HSD) test for modal, tense, falsetto and creaky phonation types. *** (p <
0.001), ** (p < 0.01) and * (p < 0.05) indicate significant differences in favour of the
algorithms on the vertical, while +++ (p < 0.001), ++ (p < 0.01) and + (p < 0.05)
indicate significant differences in favour of the algorithms on the horizontal axis.

ESPS SEDREAMS DYPSA YAGA ZFF

Falsetto
SE-VQ 0.31 0.78 *** * 0.89
ESPS * *** *** 0.92
SEDREAMS ** 0.48 0.17
DYPSA 0.54 +++
YAGA +++

Creaky
SE-VQ * 0.99 *** 0.91 0.99
ESPS 0.15 0.73 ++ 0.19
SEDREAMS ** 0.59 1.00
DYPSA +++ ++
YAGA 0.59
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Voice analysis toolkit

As part of the contributions of this Ph. D. thesis I have made the algorithms developed

publicly available here: https://github.com/jckane/Voice_Analysis_Toolkit/

Below is the README file contained in the toolkit, providing details of ownership,

usage and relevant references.

######################################################################

########### VOICE ANALYSIS TOOLKIT ###################################

######################################################################

This software has been coded by John Kane at the Phonetics and Speech

Laboratory in Trinity College Dublin, early-2013. This work is supported

by the Science Foundation Ireland, Grant 07/CE/I1142 (Centre for Next

Generation Localisation, www.cngl.ie) and Grant 09/IN.1/I2631 (FASTNET).

The toolkit contains a range of matlab files for glottal source and

voice quality analysis. For most of the algorithms Matlab versions

since 2009 be suitable. However, for the CreakyDetection_CompleteDetection.m

function only Matlab versions since Matlab R2011a (and including the neural

network toolbox) will be able to run it. Note that the creak detection

algorithm used here was developed jointly by John Kane (Phonetics and

Speech Laboratory in Trinity College Dublin) and Thomas Drugman (University

of Mons, Belgium) and that same

algorithm is also available within the GLOAT toolkit.

215



Appendix 216

GETTING STARTED

If requiring the use of the LF mode function the lf_Area_newton.c in the

general_fcns/ directory must be mex-ed, e.g., use this command:

mex lf_Area_newton.c

in the general_fcns/ directory.

Note however there mex-ed versions are already included for Linux (32-bit),

Mac (64-bit) and Windows (32-bit and 64-bit).

Note also that the SRH f0/VUV tracking algorithm from the GLOAT toolkit

(Thomas Drugman, University of Mons) is used with this toolkit. The GLOAT

toolkit can be downloaded from here:

GLOAT - http://tcts.fpms.ac.be/~drugman/Toolbox/GLOAT.zip

To see details of the usage of each of the methods, simply use the

help command in matlab, e.g.,

help SE_VQ

TESTING

To do a test-run of the software on an included ARCTIC utterance,

use the command:

[x,fs]=wavread(’arctic_a0007.wav’);

test_Voice_Analysis_Toolkit(x,fs)

FEEDBACK

Note that the code here has been developed and tested in a UNIX based
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environment. None of the directory handling has been hardcoded and hence

there should not be problems running this on a windows machine. Also,

the code has been developed for Matlab 2011b. There may be unforeseen

problems with previous (and potentially future) versions. If you have

any difficulties or issues with the code please email me: kanejo@tcd.ie

NOVEL ALGORITHMS - BRIEF DESCRIPTION

SE_VQ - Algorithm for detecting glottal closure instants. This is a further

further development of the SEDREAMS algorithm (Drugman et al 2012)

and is designed to improve selection of GCI candidates through the

use of a dynamic programming algorithm. It also involves a

post-processing step to remove false positives in creaky

voice regions.

dyProg_LF - Algorithm for fitting LF model pulses to an

estimated glottal flow derivative waveform. The method involves

an exhaustive search process using Rd, a dynamic programming algorithm

to choose the optimal path of Rd values and a subsequent optimisation

algorithm in order to refine the fit by varying all three R-parameters

MDQ - The maxima dispersion quotient (MDQ) is used for discriminating

breathy to tense voice based on wavelet-based decomposition of the

LP-residual signal. Dispersion is measured in the vicinity of the GCI

creak_detect - An algorithm for detecting creaky voice regions from speech

signals. The detection is based on a combination of new and existing

acoustic features relevant to creaky voice which are used as input

features to a artificial neural networks based classifier, which

has been trained on a wide range of speech. Note that the development of

this method has been done in collaboration with Thomas Drugman,

University of Mons, Belgium.
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