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Understanding how the brain can make reliable perceptual judg-
ments despite imperfect sensory information has become a central 
theme of neuroscience. Almost all theoretical accounts of this process 
invoke two essential ingredients: the momentary encoding of sensory 
information necessary for the decision (evidence) and the sequential 
integration of evidence into a decision variable suitable for driving 
action. A decision variable grows monotonically with the likelihood 
that an emerging decision is the correct one and determines behavior 
through the imposition of a boundary-crossing decision criterion1–4.  
In recent years, ground-breaking single-cell recording studies in 
monkeys have successfully identified neuronal signals that explicitly 
encode these ingredients, leading to a dramatic growth of interest 
in the area. Sensory evidence signals have been identified that both 
encode relevant stimulus parameters and substantially bear on an ani-
mal’s perceptual judgments independently of the sensory input5–7. In 
addition, signals resembling decision variables have been identified in 
brain areas involved in planning the operant actions used to indicate 
perceptual decisions, which build as a function of cumulative sensory 
evidence and exhibit a threshold effect for commitment that precisely 
accounts for the timing and accuracy of decisions8–10.

The advances made in monkey neurophysiology have given rise to a 
strong imperative to identify sensory evidence and decision variable sig-
nals in the human brain. Success on this front not only holds promise for 
more mechanistically principled investigations of clinical brain disorders, 
but may open the door to basic research studies of higher level aspects of 
decision-making that are more amenable to investigation or that may even 
be uniquely expressed in humans11. However, the technical limitations of 
electrophysiological and functional imaging methods, such as poor spatial 
or temporal resolution, have rendered this a considerable challenge.

Thus far, human brain activations have been described that either 
correlate with parameters derived from a hypothetical decision  

process12–14 or discriminate between conditions hypothesized to influ-
ence a theoretical decision variable such as difficulty15–17. However, 
no study has directly demonstrated and characterized a freely evolving 
signal that directly represents the decision process itself. We designed 
a decision-making task that allowed us to isolate the neural signatures 
of sensory evidence and evidence accumulation directly, without reli-
ance on assumptions and with the bare minimum of signal process-
ing. These electrophysiological signals exhibited every aspect of the 
dynamics observed in their single-neuron counterparts in terms of 
their inter-relationship and prediction of both the timing and accu-
racy of behavior. Furthermore, we found for the first time, to the best 
of our knowledge, the existence of an evidence-accumulating decision 
process that is fully domain general, exhibiting the same decision- 
predictive dynamics regardless of sensory modality and stimulus  
features, and strongly evident even in the absence of overt action.

Our task design includes four essential components. First, partici-
pants were required to detect intermittent changes in a single feature 
of a continuously presented stimulus. By rapidly flickering the critical 
sensory feature, an independent and continuous neural read-out of the 
momentary sensory input to the decision process could be captured in 
steady-state evoked responses. Second, the feature changes defining a 
target occurred smoothly and gradually. Human electrophysiology tasks 
typically involve sudden-onset, discrete stimuli that evoke a complex 
spatio-temporal pattern of scalp signals whose individual dynamics 
cannot be reliably ascertained without elaborate signal transforma-
tions13. The use of gradual targets eliminated transient sensory-evoked 
signals from the standard event-related potential, thereby offering a 
clear view on neural decision formation over longer timescales. Third, 
by using manual button-push as the operant response, we were able to 
continuously track the preparatory activity of contralateral pre-motor 
structures during decision formation via limb movement–selective 
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In theoretical accounts of perceptual decision-making, a decision variable integrates noisy sensory evidence and determines 
action through a boundary-crossing criterion. Signals bearing these very properties have been characterized in single neurons in 
monkeys, but have yet to be directly identified in humans. Using a gradual target detection task, we isolated a freely evolving 
decision variable signal in human subjects that exhibited every aspect of the dynamics observed in its single-neuron counterparts. 
This signal could be continuously tracked in parallel with fully dissociable sensory encoding and motor preparation signals, and 
could be systematically perturbed mid-flight during decision formation. Furthermore, we found that the signal was completely 
domain general: it exhibited the same decision-predictive dynamics regardless of sensory modality and stimulus features and 
tracked cumulative evidence even in the absence of overt action. These findings provide a uniquely clear view on the neural 
determinants of simple perceptual decisions in humans.

http://www.nature.com/doifinder/10.1038/nn.3248
http://www.nature.com/natureneuroscience/


©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�	 advance online publication  nature NEUROSCIENCE

a r t ic  l e s

beta-band (16–30 Hz) activity18,19. Finally, whereas almost all decision- 
making tasks have been divided into discrete trials with obvious or 
predictable evidence onset, ours was performed continuously in long, 
uninterrupted blocks with infrequent and unpredictable target onsets. 
This feature enabled investigation of the neural determinants of deci-
sion formation before as well as during target presentation, providing 
insight into the effects of fluctuating task engagement characteristic of 
natural human decision-making. A further advantage of our approach 
is that it is readily transferable to a range of sensory modalities, allow-
ing us to establish the generality of human decision mechanisms.

RESULTS
We recorded 128-channel electroencephalographic data from human 
participants performing several versions of our continuous gradual-
target detection task. In the initial version, participants continuously 
viewed a persistent flickering annulus for gradual contrast reductions 
that occurred intermittently in each of eight 4-min blocks (Fig. 1a). 
Participants made a right-handed button press the moment they were 
certain that the stimulus was fading. We tracked the basic sensory 

encoding of contrast over time by measuring the amplitude of the 
occipital steady-state visual-evoked potential (SSVEP)20, driven by 
the on-off flickering of the stimulus at 21.25 Hz. On target onset, 
contrast linearly dropped from the inter-target baseline level of 65% 
to 35% over the course of 1.6 s, with the result that targets were very 
rarely missed, but were detected at highly variable latencies (mean 
detection accuracy, 98% ± 2.8; mean reaction time, 1,310 ms ± 160; 
mean intra-subject reaction time variability (s.d.), 612 ms ± 65; mean 
false alarms, 1.1 per block ± 1.3; Fig. 1b).

Neural signatures of sensory evidence and its integration
As predicted, the sensory-specific SSVEP, the motor-selective left-
hemisphere beta (LHB) and the broad-band event-related poten-
tial (ERP) each underwent gradual changes on the timescale of the 
target contrast reduction (Fig. 1c). Standard ERP analysis, which 
simply consists of trial averaging and baseline subtraction, revealed 
a single, robust centro-parietal positivity (CPP) that increased  
steadily with incoming evidence and peaked at the time of response  
execution. Crucially, the use of gradual targets successfully eliminated 
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Figure 1  Distinct sensory evidence and decision signals observed during gradual target detection. (a) Target contrast reduction time course. (b) Grand-
average reaction time (RT) distribution (19 subjects). Single trials were sorted by reaction time and divided into three equal-sized bins. (c) Neural 
signals undergoing gradual changes on the timescale of the physical contrast change, aligned to stimulus onset (left) and response (right). Vertical 
dashed lines denote mean reaction time. Markers running along the bottom of each plot indicate time points at which a linear regression of signal 
amplitude onto reaction time reached significance (P < 0.05). (d) The cumulative sum of SSVEP divergence from baseline provided a better fit for the 
dynamics of the LHB and CPP signals than the raw SSVEP amplitude. To facilitate visualization of the comparison, we baseline-subtracted and inverted 
SSVEP amplitude. LHB was transformed for each participant so that it reflected the percentage decrease from baseline, then inverted. (e) Single-
trial surface plots showing the temporal relationship between each neural signal (normalized relative to each individual’s baseline average) and target 
detection latency (curved black line). Single-trial SSVEP, LHB and CPP signals were pooled across participants, sorted by reaction time and smoothed 
over bins of 50 trials with a Gaussian-weighted moving average using the EEGLAB toolbox38. The latency of action execution was closely tied to that of 
the two decision signals, but was less closely related to the sensory evidence signal. (f) Signal scalp topographies, all with pretarget baseline subtracted. 
Color bars in e and f represent amplitudes.
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sensory-evoked deflections from the ERP trace, making it possible to 
finely trace the evolution of the CPP from its onset to its peak.

To establish the dynamics of the three signals and their relationship 
to the timing of decision report, we split each participant’s reaction 
time distribution into equal-sized fast, medium and slow reaction 
time bins and plotted the grand average signal time courses aligned to 
both the target onset and action execution for each bin (Fig. 1c). The 
SSVEP signal exhibited a crucial hallmark of true sensory evidence,  
defined as the perceptual quantity feeding directly into the decision 
process; its amplitude not only followed the decreasing trend of physical 
stimulus contrast, but also strongly predicted the timing of action inde-
pendently of sensory input (that is, despite identical sensory input on  
all targets).

Both the LHB and the CPP signals also covaried with reaction time. 
Unlike the linearly decreasing SSVEP, however, the build-up rates of 
the LHB and CPP increased over time, indicating that they were not 
simply tracking the sensory evidence itself, but were instead indexing 
its temporal integration. To test the integration hypothesis, we per-
formed separate regressions for each participant to fit the response-
locked LHB and CPP with the SSVEP divergence from baseline and 
its cumulative sum, beginning 1.2 s before response time (Fig. 1d). 
The r2 statistic for the regression on CPP increased from 63 ± 27% to  
85 ± 26% when we used cumulative rather than raw SSVEP divergence 
(t test, t18 = 4.0, P = 0.0009). For LHB, r2 increased from 53 ± 23% to 
67 ± 25% (t18 = 3.4, P = 0.003). Thus, LHB and CPP exhibit the first 
predicted characteristic of the theoretical decision variable, temporal 
integration of sensory evidence.

The second essential characteristic of a decision variable is that 
the time of commitment and action execution is determined by its 
amplitude reaching a threshold or criterion level. Consistent with 
this, the response-aligned LHB and CPP waveforms (Fig. 1c,e) 
reached a fixed amplitude irrespective of reaction time. Furthermore, 
trial-to-trial variance in amplitude measured just before response 
initiation was significantly lower than a permutation distribution 
derived by randomly reassigning reaction times to trials for LHB 
and the CPP (both P < 0.0001), but not the SSVEP (P = 0.14, see 
Online Methods). An additional linear regression analysis indicated 
that the peak latency of LHB, CPP and SSVEP signals accounted 
for 85%, 90% and 20% of the variance in 
reaction time, respectively (all P < 0.001, 
see Online Methods). Thus, the LHB and 
CPP signals were better predictors of reac-
tion time than the sensory evidence signal 
itself and were related to response time via a 

boundary-crossing criterion. The scalp distributions of the SSVEP, 
LHB and CPP signals are shown in Figure 1f.

Decision signals determine perception
To establish the connection between LHB and/or CPP and target 
detection accuracy, we asked a different set of participants to com-
plete an alternate task version in which targets were presented at five 
randomly interleaved levels of difficulty determined by the duration 
of the stimulus contrast drop (Fig. 2a). Accuracy improved steadily 
as a function of contrast drop duration, with almost no detection 
of the hardest targets and near perfect performance on the easiest 
targets (Fig. 2b). The LHB and CPP signals markedly diverged for 
‘hit’ compared with ‘miss’ trials, despite identical physical stimulation 
in the two cases (Fig. 2c). We quantified the reliability with which 
the single-trial amplitude of the decision signals predicted detection 
accuracy (hits versus misses) using a receiver operating characteristic 
(ROC) analysis21 conducted at each time point in the target epoch. 
The ROC analysis was focused on targets at the intermediate difficulty 
level because the proportion of hits and misses was roughly equal 
on these trials (52.8 ± 18.9%). Significant deviations in classification 
accuracy from chance levels were determined via a permutation test 
(1,000 iterations with random trial reassignment conserving indi-
vidual hit and miss proportions). This ROC analysis revealed strong 
performance-predictive activity in both LHB and CPP emerging soon 
after target onset and steadily increasing across the target epoch, indi-
cating that larger amplitudes were associated with higher detection 
probability (Fig. 2d). Both signals achieved significant performance 
classification >600 ms before the average reaction time.

The false alarm rate was slightly higher on this version of the task 
(1.86 ± 1.3 per block), which allowed us to conduct a separate analysis 
of these events. We found that false alarms were preceded by reliable 
build-up in LHB and CPP (Fig. 2c), suggesting that the decision process 
was occasionally susceptible to type I error resulting from an excessive 
accumulation of internal, sensory noise. The LHB and CPP signals dif-
fered, however, in the extent to which their amplitudes differentiated 
between correct detections and false alarms. Separate ANOVAs on 
amplitude in an 80-ms window centered on response time, with five 
levels of response type (correct hits at each of the four lowest levels of 
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Figure 2  Decision signals determine the 
probability of target detection. (a) Contrast 
reduction time course of the five target-
detection difficulty levels. (b) Detection 
accuracy across the 11 subjects decreased  
and reaction time increased as a function of 
target difficulty (error bars represent s.e.m.).  
(c) LHB and CPP signals for hits versus misses 
at each difficulty level, aligned to stimulus 
(left) and response onset (right). Vertical dashed 
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insufficient trials for analysis of hits at the 
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level. (d) Time course of performance-predictive 
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target difficulty plus false alarms), indicated 
a significant main effect of response type for 
CPP amplitude (F4,40 = 8.9, P < 0.0001), but not 
for LHB (F4,40 = 1.9, P = 0.14). LHB exhibited 
an all-or-none relationship with responses that 
is characteristic of an effector-selective signal 
directly determining the point of motor execu-
tion (all contrasts P > 0.1). In contrast, false alarms were executed at 
significantly lower amplitudes of CPP than any correct response (all 
contrasts P < 0.001), suggesting that this signal has a more central inter-
mediary role in regulating the translation of sensation into action.

CPP amplitude on detection of the second most difficult target level 
was also significantly reduced relative to the easier targets (P < 0.01). 
This may be accounted for by increased trial-to-trial variability in the 
distance to bound in this task, in which the evidence and detection 
probability randomly varied from target to target. This would have 
the result that hits on the most difficult targets occur only when the 

distance to criterion is low by chance. In addition, the peak latency of 
the CPP was inversely related to target difficulty (F3,30 = 5.6, P < 0.01;  
linear contrast, P < 0.05). This can be explained by the fact that the more 
difficult targets impose a shorter deadline on detection; thus, trials  
having an early accumulator onset by chance more likely result in  
a hit.

Online manipulation of evidence accumulation
We next explored the sensitivity of the two decision signals to pertur-
bations of the physical evidence. In another task version, we randomly 
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Figure 4  The CPP decision signal accumulates incoming sensory evidence irrespective of sensory modality or target feature. (a) Comparison of visual 
versus auditory versions of the gradual target task (19 subjects). Top, identical time courses were used for visual and auditory targets (defined by a 
linear decrease in volume). Middle, both SSVEP and SSAEP traced target emergence. Vertical dashed lines indicate mean reaction time in all panels of 
this figure. Bottom, CPP exhibited the same close relationship to reaction time in both modalities. (b) Comparison of signals when targets were defined 
by contrast increases versus decreases (seven subjects). Top, target contrast time courses. Middle, SSVEP showed opposite trends depending on the 
direction of contrast change. Bottom, CPP was unaffected by the direction of contrast change. (c) Comparison of signals when targets were defined by 
auditory volume (19 subjects) versus frequency decreases (20 subjects). Top, target time courses. Middle, by definition, the SSAEP was abolished when 
the frequency of the auditory envelope modulation was changed. Bottom, CPP was unaffected by the target-defining feature in the auditory domain.  
(d) Comparison of signals when targets are attended versus unattended (18 subjects). Top, contrast time courses. Middle, SSVEP traced contrast 
reductions even when they were unattended. Bottom, the CPP was abolished when contrast reductions were task irrelevant.
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interleaved the original 1.6-s contrast-drop targets with a contrast 
drop that was briefly interrupted at 600 ms by turning it back toward 
baseline for 450 ms before resuming its decline (Fig. 3a). Although 
this perturbation produced a significant delay in reaction time com-
pared with regular targets (perturbation, 1,909 ± 148 ms; regular, 
1,471 ± 131 ms; P < 0.001), there was no difference in accuracy (per-
turbation, 94.6%, ± 6.2; regular, 95.7% ± 6.1; false alarms, 0.78 ± 0.78 
per block), and questioning of participants during pilot testing indi-
cated that it was not consciously perceived.

The temporal evolution of both LHB and CPP was highly sensitive 
to the brief perturbation (Fig. 3b). The effect was even more promi-
nent when averaging over a smaller subset of trials narrowly centered 
on the mode reaction time for each target type (1.3–1.7 s for the 
regular targets, 1.7–2.4 s for the perturbation targets; Supplementary 
Fig. 1), confirming that the grand average effect is a true represen-
tation of the single-trial dynamics and not an artifact of a bimodal 
reaction time distribution in the perturbation condition.

An abstract decision signal
To tease apart decision formation and motor preparation, we asked 
the same group of participants to repeat this version of the task, but 
eliminated the hand movement requirement. Instead, participants 
were instructed to mentally count the targets and to report the final 
tally at the end of each block. Detection accuracy for mental counting 
was comparable to performance in the button press condition (mean 
accuracy, 97 ± 2.7%). Analysis of the mental counting blocks revealed 
that the CPP continued to track the cumulative sensory evidence, 
whereas LHB did not (Fig. 3b).

The generality of the CPP was further investigated by varying the 
sensory requirements of the task. We first translated our task into 
the auditory domain by having participants monitor a continuous 
tone for targets that were defined by a gradual drop in volume. The 
tone was envelope-modulated at 40 Hz, driving an auditory corti-
cal oscillation at the same frequency (steady-state auditory-evoked 
potential, SSAEP), which, similar to the SSVEP in previous iterations, 
provided a continual read-out of the encoding of sensory evidence. As 
expected, there was a steady drop in SSAEP amplitude as the target 
emerged. The CPP exhibited the same close relationship with reac-
tion time in the auditory modality as it did in the visual (Fig. 4a). 
Further underlining its insensitivity to the specific content of sen-
sory information, the CPP was reliably observed regardless of target 
feature in either the visual (contrast increases versus decreases) or 
auditory (frequency versus volume decreases) modalities (Fig. 4b,c 
and Online Methods).

A final key characteristic of a true decision 
variable is that it should only be responsive 
to goal-relevant sensory information. To test 
this, we returned to the original version of 
our task and introduced an additional con-
dition in which participants ignored the  
annulus and instead monitored a small square 
at fixation for sudden transient increases in 
size. Gradual decreases in the contrast of 
the surrounding annulus, identical to those 
defining the target in the initial task ver-
sion, continued to occur, but were rendered 
irrelevant. Despite lower tonic amplitude 
to the unattended annulus, the SSVEP still 
decreased over time alongside the now  
irrelevant contrast decrease, but, in this case, 
the CPP was extinguished (Fig. 4d).

Finally, we noted that the CPP shares all of the characteristics of 
the classic P300 ERP component (also referred to as P3b) that were 
measurable in the present context, including polarity, peak coinci-
dence with response execution (Fig. 5a), topography (Fig. 5b) and 
contingency on task relevance22. When we compared the CPP to the 
conventional P300 that was elicited by the sudden-onset fixation tar-
gets in the final iteration of our task, we observed substantial across-
subject correlations of amplitude (r = 0.83, P < 0.0001; Fig. 5c) and 
within-subject correlations of topography (r = 0.44 ± 0.17, P < 0.001). 
It is likely that the topographical correlation underestimates the true 
relationship between P300 and CPP, as the sudden onset of the fixa-
tion targets and the tighter range of reaction time leaves the P300 far 
more susceptible to topographical distortion by sensory-evoked and 
motor components.

DISCUSSION
Our results open a new window onto the neural determinants of simple 
perceptual decisions in humans by isolating discrete, freely evolving 
neural signatures of sensory evidence encoding, decision formation and 
motor preparation in the human brain. These signals could be continu-
ously monitored with a minimum of signal processing and with sufficient 
temporal resolution to allow their individual dynamics to be observed 
and systematically perturbed mid-flight during decision formation, 
which was previously only possible with single-neuron recordings23.  
In so doing, our results also demonstrate that the human brain employs 
an abstract, supramodal representation of accrued sensory evidence 
that exerts a deterministic influence on perceptual reports irrespective 
of specific sensory or motor requirements.

Theoretical and empirical neurophysiological accounts of the decision- 
making process offer clear predictions regarding the properties that 
sensory evidence and decision signals should exhibit2,4. To date, the 
vast majority of human studies have identified sensory evidence signals  
only on the basis of their sensitivity to relevant physical stimulus 
changes. This is problematic because a given sensory input can elicit 
signals that vary with physical content, but that do not necessarily 
feed into the decision process. By vastly simplifying the perceptual 
requirements of our task such that the relevant physical information 
was limited to a single persistent perceptual feature, we were able to 
capture a precise and continuous neural read-out of its momentary 
encoding in early sensory cortex. Critically, we found that trial-to-trial 
variability of these sensory signals predicted reaction time even when 
physical evidence was held constant. This observation is noteworthy 
given that, in drift diffusion models, response time variability is typi-
cally explained by within-trial variability of noisy evidence samples4. 
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Here, the requirement for continuous monitoring over periods of 
several minutes is likely to have accentuated the influence of trial-
to-trial attentional fluctuations on the sensory evidence signal, in 
comparison with the discrete trial designs used in most perceptual 
decision-making studies.

The defining feature of a decision variable is that its time course 
should build as a cumulative function of sensory evidence and deter-
mine behavior via a boundary-crossing criterion. We identified two 
distinct signals that shared these exact characteristics. Both LHB and 
CPP time courses corresponded to the cumulative sum of the sensory 
evidence signal and exhibited a threshold effect for commitment that 
precisely accounted for the perceptual reports of our participants. 
Build-up of the two signals was observed even when participants 
failed to make a response or when they falsely identified a target, con-
firming that they are not merely an antecedent of response execution, 
but instead reflect a more central detection process. Despite minimal 
signal processing, single trial LHB and CPP measurements achieved 
performance classification accuracy levels that are very similar to 
those obtained when single-unit signals are used to predict speeded 
perceptual detections in monkeys24. They are also markedly high 
given the temporal variability of short-lived decision signal peaks in 
our reaction time task as compared with the sustained signal elevation 
observed in tasks incorporating post-decision delays to response19. 
Finally, both the LHB and CPP were highly sensitive to systematic 
perturbation of the physical evidence during decision formation, 
demonstrating the tight dynamic coupling between perceptual and 
decision processes in the human brain.

By systematically manipulating the sensory and motor require-
ments of our detection task, we found that the CPP represents a pre-
viously unknown class of decision signal that accumulates evidence 
and determines subsequent action regardless of the sensory modality 
or the feature comprising the evidence, and we observed this even in 
the absence of overt action. The close relationship between premotor 
activity and behavior observed in animal studies has given rise to the 
dominant view that decisions are formed in an intentional frame-
work; that is, directly in effector-specific motor planning signals2. 
The LHB measured in our study and in others19 likely represents the 
same class of decision variable. However, when the need for an overt 
target detection response was removed in our task, the LHB ceased 
to encode a decision variable, indicating that this effector-specific 
signal does not have a general role in decision formation. Recent  
studies in monkeys have used tasks in which the direction of the move-
ment needed to indicate a decision is undetermined during evidence 
accrual, revealing that subpopulations of LIP and superior colliculus 
neurons continue to exhibit decision-related activity that distinguishes 
categorical alternatives25–27. However, the accumulation-to-threshold 
relationship between neuronal firing rates and behavior has only been 
reported when stimulus-response mappings are fixed. Given that real-
life decisions must be flexibly based on a diverse range of sensations 
and expressed through a diverse repertoire of actions, it stands to 
reason that domain-general decision variables exist in the brain that 
trace the build-up of decision certainty in a way that is invariant to the 
specific content of sensory or motor processing. Recent fMRI studies  
have pinpointed locations in the human brain where such signals 
may reside11, but the limited temporal resolution of this technique 
has precluded verification of the critical decision-predictive proper-
ties that define a decision variable. To the best of our knowledge,  
the CPP represents the first conclusive evidence of a discrete signal 
that encodes a domain-general decision variable.

Such abstract signals may have been overlooked in animal research 
as a result of the reliance on recordings from a circumscribed set of 

premotor regions, but it is also possible that the neural circuitry gov-
erning perceptual decisions is fundamentally different in monkeys 
and humans. The evolution of an abstract decision mechanism that 
is functionally separated from motor effector systems could account 
for the greater flexibility of human behavior28. The fact that the CPP 
was invoked for elementary perceptual detections that entailed simple, 
reflexive movements suggests that, for humans at least, domain-general 
decision variables are a fundamental feature of decision-making.

The use of a continuous performance task made it possible to 
explore neural determinants of decision-making in the inter-target 
interval. Despite the fact that physical contrast was held constant, 
SSVEP and LHB were subject to substantial fluctuations, such that 
lower pre-target levels were associated with faster reaction time 
(Fig. 1c). This indicates that, in temporally uncertain continuous 
monitoring contexts, faster reaction times occur partly as a result of 
spontaneous changes in the momentary perception of sensory evi-
dence (SSVEP) and/or in preparatory motor activity (LHB) stray-
ing toward execution threshold. Our task can therefore elucidate the 
mechanisms by which fluctuations in task engagement occurring in 
situations of low motivation and/or attention contribute to poorly 
timed or incorrect decisions29, a facet of behavior that is almost exclu-
sively amenable to investigations in humans.

Finally, it is interesting to note the strong similarities between the 
CPP and the classic P300. The P300 has been intensively studied for 
over four decades and has been observed in a multitude of task con-
texts and discriminating a range of clinical conditions30. Although 
progress was initially made in relating the P300 to specific neural 
computations in the framework of signal detection theory31,32, there 
has been little consensus regarding its precise functional role. A major 
point of disagreement has been whether the P300 reflects neural 
processes occurring before33,34 or after22,35 a perceptual decision has 
been formed. If the CPP is indeed equivalent to the P300, our results 
indicate that the P300 represents the formation of the decision itself, 
determining behavior via a boundary-crossing criterion. The start-
ing level of the accumulation process would be expected to vary as a 
function of priors, which would account for the famous sensitivity of 
the P300 amplitude to stimulus probability4,36,37.

In conclusion, our results indicate that it is possible to continuously 
monitor independent sensory evidence, decision variable and motor 
preparation signals in human subjects. Our study offers a power-
ful new approach to the analysis of human electrophysiology that 
paves the way for a more mechanistically principled understanding of  
sensorimotor transformations in the normal and pathological brain.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Participants. Participants gave written informed consent, were over the age of 18, 
and had normal or corrected-to-normal vision, no history of psychiatric diagnosis 
or head injury, and no sensitivity to flickering light. Procedures were approved by 
the School of Psychology, Trinity College Dublin ethical review board in accord-
ance with the Declaration of Helsinki.

Task procedures. Tests were performed in a dark sound-attenuated room while 
seated 50 cm from the monitor. All visual stimuli were presented on a gray back-
ground and participants were instructed to fixate on a centrally presented 5 × 
5–pixel white square. Unless otherwise stated, visual stimuli were presented on a 
55-cm LCD monitor with 120-Hz frame rate. Auditory stimuli were delivered via 
headphones. Prior to recording, participants completed a short practice block of 
eight targets, and rested between blocks thereafter.

Task version 1: fixed visual contrast decrease and auditory volume decrease. The 
first task version was administered to 24 participants, of which five were excluded 
from analysis because of excessive artifacts (>50% trial loss), leaving a final sample 
of 19 participants (five females, one left-handed, mean age of 20.4 ± 4). Stimuli were 
presented on a 51-cm CRT monitor operating an 85-Hz refresh rate.

Participants continuously monitored an annular flickering (21.25 Hz) pattern 
stimulus (inner radius = 1.14°, outer radius = 2.29°) for intermittent targets defined 
by linear contrast changes from 65 to 35% over 1.6 s. The annular pattern consisted 
of alternating light and dark radial segments, with two cycles per quadrant. The 
inter-target interval was randomly 4, 7.2 or 10.4 s. Participants performed eight 
blocks, each lasting 4 min and containing 25 targets. Participants were instructed 
to avoid guessing and make a right index finger mouse button press as soon as 
they were certain that the annulus was fading.

To enable investigation of the domain generality of our decision signals, partici-
pants also performed eight 4-min blocks of an auditory analog of the visual task 
in which they monitored a continuous 500-Hz, 70-dB tone, envelope-modulated 
at 40 Hz, for targets that were defined by a linear reduction in volume reaching 
30% at 1.6 s, matching targets in the visual condition. The sensory modality of 
the task alternated block by block, and the condition that was performed first 
was counter-balanced across participants. The visual stimulus was continuously 
presented in parallel during the auditory detection blocks and vice versa, but the 
unattended stimulus in each condition was held constant at all times to ensure that 
it was completely irrelevant to the task at hand.

Manual responses made >150 ms into a target interval were identified 
as hits. Target detection responses after the physical evidence had peaked  
(1.6 s) were extremely rare (0.6 ± 0.8%), confirming that participants did not use 
the return to baseline as a cue that a target had been presented. Nevertheless, 
these late responses were excluded from electrophysiological analyses in all  
task conditions.

Task version 2: visual contrast decreases of variable duration. To establish 
the connection between LHB, CPP and target detection accuracy, participants 
monitored a 20-Hz flickering annulus (as in version 1, except inner radius = 1.14°, 
outer radius = 3.1°) for targets that were presented at five randomly interleaved 
levels of difficulty by manipulating the duration of the downward ramp in stimu-
lus contrast. After peaking, contrast linearly increased to reach baseline level at  
2.4 s post-onset for all conditions, guarding against the possibility that the return 
to baseline exogenously cues target appearance. This task was performed by  
15 participants, two of which were excluded from analysis because they made 
insufficient misses (<10) to allow a comparison of hits versus misses at any single 
target difficulty level. A further two participants were rejected because of insuf-
ficient false alarms (<10), leaving a final sample of 11 right-handed participants 
(three males, mean age = 20.4 ± 4).

Participants performed 12 4-min blocks (25 targets) of the task. The hardest and 
easiest difficulty levels were presented less often than the intermediate difficulty 
levels (12.5% versus 25%), as only the latter levels were intended to be divided into 
hits and misses. Participants were informed that the duration, and therefore the 
magnitude, of stimulus fading would vary from target to target and instructed to 
respond as soon as they were sure that the stimulus was fading. Feedback on the 
percentage detection accuracy for each level of difficulty was provided after every 
block to promote effort maintenance.

Task version 3: perturbation of sensory evidence, manipulation of response 
requirements and task relevance. A single group of 20 participants performed 
three separate conditions. Two participants were excluded because of poor count-
ing performance in condition 2 (detection accuracy < 2.5 s.d. below group aver-
age) leaving a final sample size of 18 (seven female, two left-handed, mean age = 
22.1 ± 4.3).

To establish the sensitivity of the decision signals to perturbations of the sensory 
evidence, participants completed five 4-min blocks in which they monitored a 
20-Hz flickering annulus (as described in task version 2) for contrast decreases 
and indicated detections with a speeded mouse button press (condition 1). Two 
different contrast-decrease time courses were randomly interleaved: regular trials 
that were identical to task version 1 and perturbation trials that contained contrast-
direction reversals at 400 and 850 ms.

To test the extent to which the decision signals were driven by the requirement 
for an overt motor response, participants performed the same task as described 
above, but instead of using a button-push response, participants were asked to 
mentally count the targets and to report the final total at the end of each block 
(condition 2). We presented 23–27 targets (inclusive, uniform distribution) in 
each block.

To establish the extent to which the CPP was specifically elicited by task- 
relevant sensory information, participants performed two further blocks in 
which they were presented with the same flickering annulus, but were asked to  
monitor the central fixation square for transient (100 ms) increases in size from  
5 to 10 pixels (condition 3). Participants were asked to indicate these fixation 
targets with a speeded button press. Gradual decreases in the contrast of the sur-
rounding annulus, identical to those defining the target in conditions 1 and 2, 
continued to occur, but were rendered irrelevant by the task instructions. Identical 
inter-trial intervals intermediated between gradual changes. Fixation targets were 
presented at random times between the offset of an annulus contrast change and 
800 ms preceding the following contrast change.

All participants completed the two blocks of condition 3 first to ensure that the 
contrast decreases would not capture attention. Fixation targets were detected with 
100 ± 0% accuracy with an average reaction time of 362 ± 19 ms and 0.06 ± 0.24 
false alarms. Thirteen of the participants completed the five blocks of conditions 
1 and 2 in sequence, but with the order of conditions counter-balanced across 
participants. The five remaining participants alternated block by block between 
conditions 1 and 2. Subanalyses revealed that the results from these five were 
entirely consistent with those of the other 13 participants.

Task version 4: visual contrast increases versus decreases. To test the sensitivity 
of the CPP to changes in the target feature, we compared two conditions in which 
a group of seven participants (four male, one left-handed, mean age = 23.3 ± 2.3) 
alternated block by block between monitoring the flickering annulus for con-
trast increases (linear rise to 95%) versus decreases (linear drop to 35%, identical 
to version 1). The starting condition was counter-balanced across participants. 
Participants completed 3–6 blocks of each condition. On average participants 
detected 95.6 ± 3.8% of ascending targets with reaction time of 1,314 ± 129 ms 
and 1.5 ± 1.2 false alarms, and detected 96 ± 5.1% of descending targets with reac-
tion time of 1,348 ± 153 ms, 0.75 ± 0.99 false alarms.

Task version 5: decreases in auditory frequency versus volume. To further test 
the generality of the CPP across target features, we administered an alternate ver-
sion of the auditory task used in version 1 in which participants monitored a 
continuous auditory tone for a gradual decrease in frequency from 40 to 30 Hz.  
A 9-cm diameter circular pattern with linearly increasing contrast from 0 to 100% 
from center to perimeter was flickered at fixation at 21.25 Hz during auditory per-
formance to allow direct comparison with task version 1, but, again, its contrast was 
held constant at all times. Visual stimuli were presented on a 51-cm CRT monitor 
operating a 85-Hz refresh rate.

This version was administered to 23 participants, three of which were excluded 
from the analysis because of excessive artifacts (>50% trial loss), leaving a final 
sample of 20 participants (seven female, one left-handed, mean age = 21.7 ± 3.2). 
On average, participants detected 95.9 ± 3.0% of auditory targets with reaction 
time of 1,215 ± 182 ms and 0.9 ± 0.6 false alarms. In Figure 4, we compare these 
data for frequency-decrease targets to the data of version 1 (volume decreases) to 
demonstrate the CPP’s insensitivity to changes in auditory target feature.
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Electroencephalogram (EEG) acquisition and analysis. Continuous EEG was 
acquired using an ActiveTwo system (BioSemi) from 128 scalp electrodes, digitized 
at 512 Hz. Eye movements were recorded using two vertical electro-oculogram 
(EOG) electrodes placed above and below the left eye and two horizontal EOG elec-
trodes placed at the outer canthus of each eye. Data were analyzed in Matlab. Noisy 
EEG channels were interpolated using spherical spline interpolation implemented 
in EEGLAB38 and EEG data were re-referenced offline to the average reference. 
Target epochs were extracted from 750 ms before target onset to 400 ms after peak 
sensory evidence. Trials were rejected if the bipolar vertical EOG signal exceeded 
±200 µV at any time in the epoch or if any scalp channel exceeded 100 µV. SSVEP 
(21.25 or 20 Hz depending on task version), SSAEP (40 Hz) and LHB (22–30 Hz, 
avoiding the SSVEP frequency) were measured using the standard short-time 
Fourier transform with a boxcar window size fitting exactly eight cycles of the 
SSVEP frequency and 50-ms step size. SSVEP was averaged over seven electrodes 
centered on standard 10–20 site Oz. SSAEP was averaged across three midline 
electrodes running posteriorly from standard site Fz. LHB was averaged over three 
electrodes around standard left-hemisphere motor site C3. The CPP analysis con-
sisted simply of averaging the single-trial waveforms, which were baseline-corrected 
relative to the 500-ms interval before target onset. CPP amplitude and latency mea
sures were taken from the average of three electrodes centered on standard site CPz. 

The grand-average waveforms were low-pass filtered up to 10 Hz for display only. 
To test for the boundary-crossing criterion effect in our signals, we compared the 
trial-to-trial variance of signal amplitudes measured just before response initiation 
(−180 to −80 ms, ending at motor potential onset; Supplementary Fig. 2) to the 
expected value of the same variance metric computed in the case in which reaction 
times were randomly reassigned to trials. We tested this for LHB, CPP and SSVEP 
using 500 permutations for each individual subject. To account for the increased 
noise in the CPP measure compared with the more robust band-limited measures 
of LHB and SSVEP, variance values were computed for amplitude measures of each 
of the three signals in bins of five trials, grouped after sorting trials in order of 
increasing reaction time. These values were representative of the values obtained for 
larger bin sizes (Supplementary Fig. 3). A linear regression analysis was conducted 
to further quantify the extent to which the peak latency of each signal accounted 
for trial-to-trial variance in reaction time. To control for possible differences in 
the signal-to-noise ratios of each signal, the single-trial traces were pooled across 
subjects, sorted by reaction time and, through repeated iterations, averaged across 
bins of increasing size (1–80). Separate regression analyses were then conducted 
for each bin size. The reaction time variance explained increased monotonically 
with bin size for all three signals and the values reported in the text were taken from 
representative bin sizes (Supplementary Fig. 4).
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